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Motivations

One of the limitations of the transformers is that their
inputs are bounded by their context length.

For example, Llama-2 has a context length of 4k
whereas average number of words in a book is between
70k and 100k tokens.

Most of the recent prominent ideas could be clustered
into four groups:

* Extending positional embeddings through
extrapolation/interpolation (e.g., xPOS, YaRN)

* Introducing recurrence to the attention mechanism
(e.g., Block-Recurrent Transformers, XL-NET)

* Introducing sparsity to the attention mechanism
(e.g., Block Sparse Attention)

* Augmenting the attention mechanism with vector
retrieval modules (e.g., Unlimiformer)
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Unlimiformer: Long-Range
Transformers with Unlimited
Length Input

* Split the input into overlapping chunks that the model can process.

a k-NN datastore. Index of one long input Retrieved

* Encode each chunk separately and store the encoded hidden states in {
hidden states

* At each decoder layer, retrieve the most important vectors from the

datastore to approximate the full attention calculations. KNN Search A
Decoder Layer

¢ Authors show that this addition could work in both zero-shot and fine- '

tuned settings. Encode chunks QL= .
. : i[ Cross attention ]
* Intheory the model can process any input with no limitation on the a ¢ c|f
length. But the authors didn’t include any comparison with models ~ A 4 -
that have longer context length. i i il
— B o o B |

* The goal of this project is to incorporate and adapt this module into
the Turing LLM model and showcase its efficiency on at least one
dataset when compared to a model with larger context length.
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* Inherent overhead latency for calculating nearest neighbors while
retrieving vectors.

* Could be mitigated by using approximate indices.

LI m Itat I O n S * The improvements seem to be insignificant on the IFT model

which requires further investigation.

* Query Bias



* The addition of the retrieval-augmented attention
layers could help increase the upper-bound

performance of the model, specially for
Ta keaways summarization.

a n d F ut u re * Future experiments involving training and/or fine-
tuning could help improve the performance of
both IFT and summarization models.

D I re Ct I O n S e Future experiments could combine this approach

(or other retrieval-based methods such as RETRO)
with orthogonal approaches such as xPOS.
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