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Background & Motivation

* Most of the previous KEPLMSs indiscriminately inject knowledge into PLMs, which can
Introduce noisy knowledge such as redundant or irrelevant information, potentially

degrading model performance.
* Some methods modify model backbones with additional knowledge encoders,

leading to inflexibility.
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Background & Motivation

* Most of the previous KEPLMSs indiscriminately inject knowledge into PLMs, which can

Introduce noisy knowledge such as redundant or irrelevant information, potentially
degrze

How to avoid injecting entities unrelated to the
sentence semantics?

How to Inject knowledge without introducing
additional parameters?
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Background & Motivation

TRELM

* |dentifying important entities as targets for knowledge injection

* knowledge-augmented memory bank

* selective parameter updates within Transformer blocks
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Background & Motivation

Contribution :

Knowledge-augmented Memory Bank: Detect important entities in pre-training
corpora and construct a knowledge-augmented memory bank, which guides the pre-
training process and accelerates convergence.

Dynamic Knowledge Routing: Propose a novel knowledge routing method that
dynamically finds knowledge paths in FFNs and selectively updates model parameters.

Comprehensive Experiments: Conduct extensive experiments and case studies to
show the effectiveness and robustness of TRELM over various NLP tasks.



TRELM Framework
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Important Entity Detection

Important Entity Detection

* Identify which entities in a sentence are more critical for — -------- - R

semantic understanding.

The Walt Disney Company, commonly known as

Disney, is an American multinational mass media

E> and entertainment conglomerate headquartered
at the Walt Disney Studios complex in Burbank,

* Define the semantic importance score Sl(e).
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* Select entities with higher semantic importance as the

target for knowledge injection.



Knowledge-augmented Memory Bank

Knowledge-augmented Memory Bank :

* The entities in the corpus follow a long-tail distribution.
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Dynamic Knowledge Routing

Dynamic Knowledge Routing :
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* Only update this part of the network weight, accelerate model training



Experiment

LAMA Result

| PLMs | KEPLMs
Datasets
| ROBERTa | KEPLER CoLAKE KP-PLM DKPLM KALM | TRELM A
T-REx 24.7% 24.6% 28.8% 32.3% 32.0%  29.8% | 33.0% +0.7%
UHN-T-REx 17.0% 17.1% 20.4% 22.5% 22.9%  22.6% | 233% +0.4%
Google-RE 5.3% 7.3% 9.5% 11.0% 10.8% 10.2% 11.5% +0.5%
UHN-Google-RE 2.2% 4.1% 4.9% 5.6% 5.4% 5.2% 59% +0.3%
Datasets BERT TRELMBERT A

T-REx 32.8% 36.8% +4.0%

UHN-T-REx 23.1% 28.0% +4.9%

Google-RE 11.5% 15.5% +4.0%

UHN-Google-RE | 5.8% 9.7% +3.9%




Experiment

Open Entity

Model Precision Recall F1

BERT 76.4+1.2 71.0+14 73.6+1.3
RoBERTa 77.4+1.8 73.6+1.7 75.4+1.8
ERNIEsgrT 78.4+19 729+1.7 75.6%+1.9
ERNIEroBERT. | 80.3+1.5 702417 749+1.4
KnowBERT 779+1.3 712415 74.441.3
KEPLERw ki 77.8+2.0 746+19 76.2+1.8
CoLAKE 77.0+1.6 75.7+1.7 76.41+1.5
DKPLM 792413 759412 77.51+1.2
KP-PLM 80.8+1.7 75116 77.8+1.7
KALM 789+15 753+16 77.1+1.6
TRELM 80.24+1.3 76.0+1.4 78.0+1.2

Model Precision Recall 1

BERT 67.23+0.7 64.81+0.6 66.00+0.6
RoBERTa 70.80+0.5 69.60+0.6 70.204+0.5
ERNIE 70.01+0.8 66.144+-0.7 68.09+0.7
KnowBERT | 71.62+0.7 71.49+0.6 71.53+0.8
DKPLM 72.61+0.5 73.53+0.4 73.071+0.5
KP-PLM 72.60+0.8 73.70+0.7 73.15+0.7
KALM 72.52+0.8 73.38+0.9 72.9540.8
TRELM 72.89+05 73.84+04 73.36+0.4




Experiment

Accelerate Performance
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Required training time is only 40% of
the original SOTA algorithm to achieve
the same performance.
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Ablation Study

Open Entity
TACRED 1 I

I

(1) Injecting knowledge into long-tall
entities yields better results than
limiting It to high-frequency
entities, suggesting a greater

77777777777 ! f benefit in enriching representations

for entities with sparse occurrences.
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(2) Superior performance can be
achieved by selectively
Incorporating knowledge into
specific subsets of entities, rather

, L . than indiscriminately targeting all
Figure 3: Injection method efficiency over Open available entities.
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Ablation Study
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(1) Both KMB and DKR enhance the convergence rate of TRELM in the pre-training phase.

(2) KMB exhibits a more pronounced effect on expediting training in the early stages, while
DKR's influence becomes increasingly significant over time, ultimately contributing to a
greater overall efficiency.



Conclusion

We propose TRELM, a robust and efficient training paradigm for pre-training
KEPLMs.

TRELM introduces two innovative mechanisms designed to streamline the
integration of knowledge into PLMs without requiring extra parameters:

(1) a knowledge-augmented memory bank that prioritizes knowledge injection for
important entities.

(2) a dynamic knowledge routing method that accelerates KEPLMs training and
enhances language understanding by updating only the knowledge paths
associated with factual knowledge.
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