

COLORADO STATE UNIVERSITY

Shadi Manafi and Nikhil Krishnaswamy

Cross-Lingual Transfer Robustness to Lower-Resource Languages on Adversarial Datasets

LREC-COLING 2024, Turin, Italy

Introduction

- Multilingual Language Models (MLLMs) exhibit robust cross-lingual transfer capabilities.
- Cross-lingual transfer: ability to leverage a information acquired in a finetuned on a task for a source language and apply it to a target language.
- Zero-shot learning may sometimes rely on "vocabulary memorization" rather than true language understanding.
- Realizing why this is the case for particular tasks is tough due to language differences and specific domain variations.
- Objectives:
 - How does zero-shot learning accuracy shift with minor input variations?
 - How do language features, like **shared vocabulary**, affect zero-shot learning?

https://medium.com/omnius/hallo-multilingual-bertc%C3%B3mo-funcionas-2b3406cc4dc2

Related Works

Adversarial data creation for NLP

- Surface-level text modifications
 - Ribeiro et al., 2018; Jia and Liang, 2017)
- **Semantic-level** alternative strategies
 - Paraphrasing (lyyer et al., 2018)
 - al., 2018; Michel et al., 2019)
 - Human-in-the-loop interventions (Wallace et al., 2019)

Input: pull[s] off the rare trick of recreating not only the look of a certain era , but also the feel . **Output:** pull[s] off the **seldom** trick of recreating not only the look of a certain era, but also the feel.

https://aclanthology.org/2020.emnlp-demos.16.pdf

Inserting, deleting, or swapping words, characters, or sentences (Gao et al., 2018;

Generating text with semantically analogous content using neural models (Zhao et

Datasets

- locations, etc.
- WikiANN dataset (Pan et al., 2017): a common multilingual NER dataset

Named Entity Recognition (NER) task: an information extraction (IE) from unstructured texts, encompassing the identification of individuals' names, organizations, geographical

Datasets

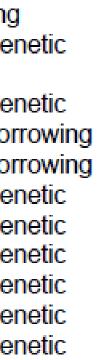
- Section title prediction task: a proxy for document classification, selection of the most appropriate title for a section text among the four presented choices.
- We built the section title prediction corpus (WikiTitle):
 - 1. Crawling the Wikipedia pages corresponding to each specific language with at least 4 sections.
 - 2. Using the **WikiExtractor** tool (Attardi, 2015) to systematically extract sections along with their associated second and third-level titles from the Wikipedia pages.
 - **3. Pairing** subsection text with four candidate titles, of which one is correct and the others are titles of other sections of the same article.
 - 4. Collecting as many samples as possible for each language up to a limit of 100,000.

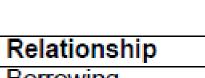
Datasets

- Focusing on 13 language pairs from a pool of 21 languages.
- Selecting language pairs usually consisting of
 - **High-Resource Language (HRL)**: One language with **greater** resources in the data ____
 - Low-Resource Language (LRL): One with fewer resources ____
 - Substantial level of **overlap in the vocabulary** —
 - **Areal** (French/Breton)
 - **Genetic** relationship (Czech/Slovak)
 - History of **borrowing** at large scale (Arabic/Farsi).
- Arabic/Hindi—serves as a kind of "control" group
 - Share a substantial amount of vocabulary due to borrowing ____
 - But use different native scripts, so low vocabulary overlap level
- Pairwise notation L1/L2: L1 refers to the HRL and L2 refers to LRL

HRL	Size	LRL	Size	Relationsh
Arabic (ar)	100K	Farsi (fa)	100K	Borrowing
Arabic (ar)	100K	Hindi (hi)	42.6K	Borrowing
Czech (cs)	100K	Slovak (sk)	61.1K	Areal, Gene
Dutch (nl)	100K	Afrikaans (af)	29.7K	Genetic
English (en)	100K	Scots (sco)	5.1K	Areal, Gene
English (en)	100K	Welsh (cy)	15.2K	Areal, Borro
French (fr)	100K	Breton (br)	8.1K	Areal, Borro
French (fr)	100K	Occitan (oc)	13.7K	Areal, Gene
Indonesian (id)	100K	Malay (ms)	60.3K	Areal, Gene
Italian (it)	100K	Sicilian (scn)	1.4K	Areal, Gene
Spanish (es)	100K	Aragonese (an)	5.1K	Areal, Gene
Spanish (es)	100K	Asturian (ast)	85.5K	Areal, Gene
Spanish (es)	100K	Catalan (ca)	100K	Areal, Gen

Size of languages for section title prediction dataset, and relationship between languages in studied pair.





Methodology

- abilities for downstream tasks:
 - **MBERT**: bert-base-multilingual-cased (Devlin et al., 2019)
 - **XLM-R** : xlm-roberta-base (Conneau et al., 2020) _
- For two tasks: **NER and section title prediction**
- We evaluate both models in different settings:
 - **Native** setting: they are fully fine-tuned in an LRL

 - Under different **perturbations** of the data

We evaluate two well-known MLLMs, which demonstrate strong cross-lingual transfer

Transfer setting: they are trained on an HRL and evaluated on the paired LRL

Perturbation Methods

Four main methods to generate adversarial sets:

- Perturbation #1 (P1): Change given names (first element) of all PER entities to randomly-1. chosen elements of the given names dataset in the same language.
 - A dataset of given names for each target language scraped from the [Language]_given_names category of Wiktionary.
- Perturbation #2 (P2): Change location names of all LOC entities to randomly-chosen 2. elements of the placenames dataset in the same language.
 - A dataset of places for each target language scraped from its Places category in Wiktionary.

Perturbation Methods

- **Perturbation #3 (P3)**: Replace **named entities** shared between L2 3. test file and L1 training file with **named entities with the same tag** unique to L2.
 - *Eiffel*: same in French and Breton. Replaced with *Bolz-enor* — **Pariz** (Arc de Triomphe), which is the same NER type, but nonoverlapping.
- Perturbation #4 (P4): take *surrounding* words shared between L2 4. test file and L1 training file with the **highest cosine similarity** with the original word unique to L2.
 - "An tour Eiffel", the word "tour": same in French and Breton. Replaced with a semantically-similar Breton word, not existing in French like "kastell".

Content word	MBERT option	XLM-R o
channels	shots	broadcas
bred	lived	assistant
population	parted	people
serve	carried	arrangem
place	event	there
journalist	lawyer	activist
female	woman	woman
hijackers	triumphs	males
defeated	won	defeating

Sample of highest cosine-similarity alternatives existing in the test split of the English dataset.

Eiffel Tower: English Tour Eiffel: French, Breton

https://aclanthology.org/2020.emnlp-demos.16.pdf

Computing Vocabulary Overlap - NER

Extracting all labeled NER chunks.

% overlap L1/L2 = $\frac{\text{number of shared entities with similar tags between L1 and L2}}{4}$ total number of entities in L2

L1	L2	% overla
ar	hi	4.88
ar	fa	19.94
CS	sk	39.55
nl	af	31.57
en	SCO	25.19
en	су	22.07
fr	br	23.33
fr	oc	23.61
it	scn	43.17
id	ms	41.87
es	an	46.26
es	ast	47.66
es	са	36.77

Computing Vocabulary Overlap – **Section Title**

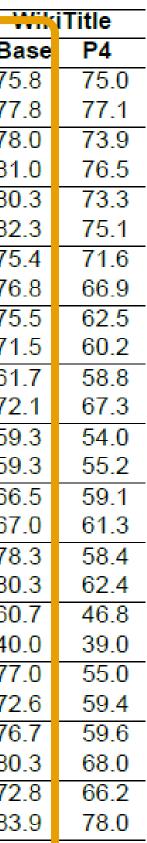
- % overlap L1/L2 =number of **shared** words between between L1 and L2 total number of words in L2
- Considering only the first 128 tokens from each section.
- Due to variances in tokenization between MBERT and XLM-R, the overlap percentage would be different.

L1	L2	Model	% ove
ar	hi	MBERT	2.12
ar	hi	XLM-R	1.98
ar	fa	MBERT	14.65
ar	fa	XLM-R	15.01
CS	sk	MBERT	24.26
CS	sk	XLM-R	24.18
nl	af	MBERT	22.63
nl	af	XLM-R	22.57
en	sco	MBERT	29.22
en	SCO	XLM-R	29.19
en	су	MBERT	17.31
en	су	XLM-R	17.08
fr	br	MBERT	9.50
fr	br	XLM-R	9.44
fr	oc	MBERT	23.09
fr	ос	XLM-R	23.04
id	ms	MBERT	36.34
id	ms	XLM-R	36.34
it	scn	MBERT	25.99
it	scn	XLM-R	25.86
es	an	MBERT	24.80
es	an	XLM-R	24.77
es	ast	MBERT	29.59
es	ast	XLM-R	29.65
es	ca	MBERT	17.12
es	ca	XLM-R	17.20

Results – Native and Transfer

- Most Initial HRL→LRL transfer performance do not reach the native LRL fine-tuning, falling below by ~1-30% F1/accuracy.
- Cross-lingual transfer goes
 closer to native for closer
 language pairs
 geographically and
 genetically

					M	BERT							X	LM-R		
				N	ER				Title			N	IER			
Train	Test	Base	P1	P2	P3	P4	P5	Base	P4	Base	P1	P2	P3	P4	P5	Ba
ar	hi	67.2	64.2	68.9	67.2	67.2	67.2	63.6	63.0	67.3	67.4	70.7	67.3	67.3	67.3	75
hi	hi	86.7	86.5	87.2	71.3	79.0	66.7	73.8	72.5	87.5	87.2	88.1	76.6	80.7	68.3	77
ar	fa	45.0	43.0	44.7	45.0	45.0	44.9	79.3	77.1	43.6	42.8	40.1	43.6	43.5	43.4	78
fa	fa	90.3	88.0	89.1	86.5	60.8	56.7	81.6	79.1	89.4	88.2	87.4	85.5	78.2	74.1	81
CS	sk	82.9	82.4	87.0	78.4	82.5	77.9	80.3	75.6	78.0	77.2	86.1	73.4	78.1	73.5	80
sk	sk	92.6	91.7	91.0	86.4	92.1	85.0	83.5	78.5	91.5	91.1	89.8	81.5	88.6	77.5	82
nl	af	81.2	81.0	83.8	78.4	81.2	78.6	78.5	71.6	79.9	80.0	81.5	77.8	79.3	76.9	75
af	af	92.2	91.6	92.1	81.1	89.5	78.5	81.3	74.3	89.8	90.0	90.8	77.9	86.2	76.0	76
en	SCO	78.3	77.9	72.0	71.0	78.2	71.7	85.7	76.2	62.4	62.0	60.6	60.6	63.2	61.3	75
SCO	SCO	93.4	93.0	83.2	81.0	91.4	79.2	88.6	80.8	90.2	89.6	82.5	79.6	87.5	75.0	71
en	су	62.5	61.8	65.3	61.3	62.4	61.6	67.5	63.6	61.5	61.2	64.9	60.4	61.4	60.4	61
су	су	92.6	91.9	87.1	77.0	89.5	75.0	76.6	73.5	90.9	90.4	85.1	76.1	83.1	67.8	72
fr	br	74.3	71.8	73.5	73.3	74.2	72.8	66.6	63.1	66.3	64.2	66.6	64.7	66.3	64.5	59
br	br	92.8	88.4	88.2	84.5	88.8	79.9	71.1	66.1	89.1	85.8	87.1	81.3	82.8	74.1	59
fr	OC	83.9	83.7	89.1	83.5	83.7	83.4	76.6	71.9	72.5	72.3	78.8	71.8	72.3	71.9	66
OC	oc	95.3	94.9	95.8	92.3	87.8	83.9	79.1	75.2	93.8	93.0	94.6	91.5	92.6	89.8	67
id	ms	68.7	67.7	76.7	64.8	68.5	64.8	79.9	68.4	69.7	69.5	79.9	66.2	69.5	65.8	78
ms	ms	92.4	92.6	83.5	81.7	81.8	70.5	82.7	71.8	92.4	91.9	89.1	71.7	79.7	59.5	80
it	scn	63.7	63.3	80.2	58.4	49.5	45.4	71.0	66.2	60.8	60.7	74.0	55.3	50.4	45.5	60
scn	scn	92.9	91.1	88.1	79.8	74.4	64.9	64.3	57.1	90.5	88.2	82.8	79.7	72.4	62.5	40
es	an	88.0	87.9	84.8	85.4	80.7	77.5	86.1	76.3	86.1	86.2	86.4	83.3	75.3	72.9	77
an	an	95.8	95.8	88.4	85.6	90.9	79.1	83.4	76.8	94.2	93.6	92.5	79.8	80.4	66.1	72
es	ast	90.4	90.2	86.0	85.1	89.6	84.6	84.1	77.5	84.3	84.2	86.0	77.0	84.1	76.3	76
ast	ast	93.6	92.8	90.1	82.7	93.3	79.7	85.2	78.4	89.6	89.2	90.1	77.7	90.0	76.4	80
es	ca	85.1	84.3	87.2	84.0	85.1	84.0	79.3	75.9	82.6	82.8	83.9	80.8	82.3	79.8	72
ca	ca	92.3	91.5	91.6	87.3	91.6	86.5	85.9	83.0	89.4	89.6	88.0	83.3	88.6	82.1	83

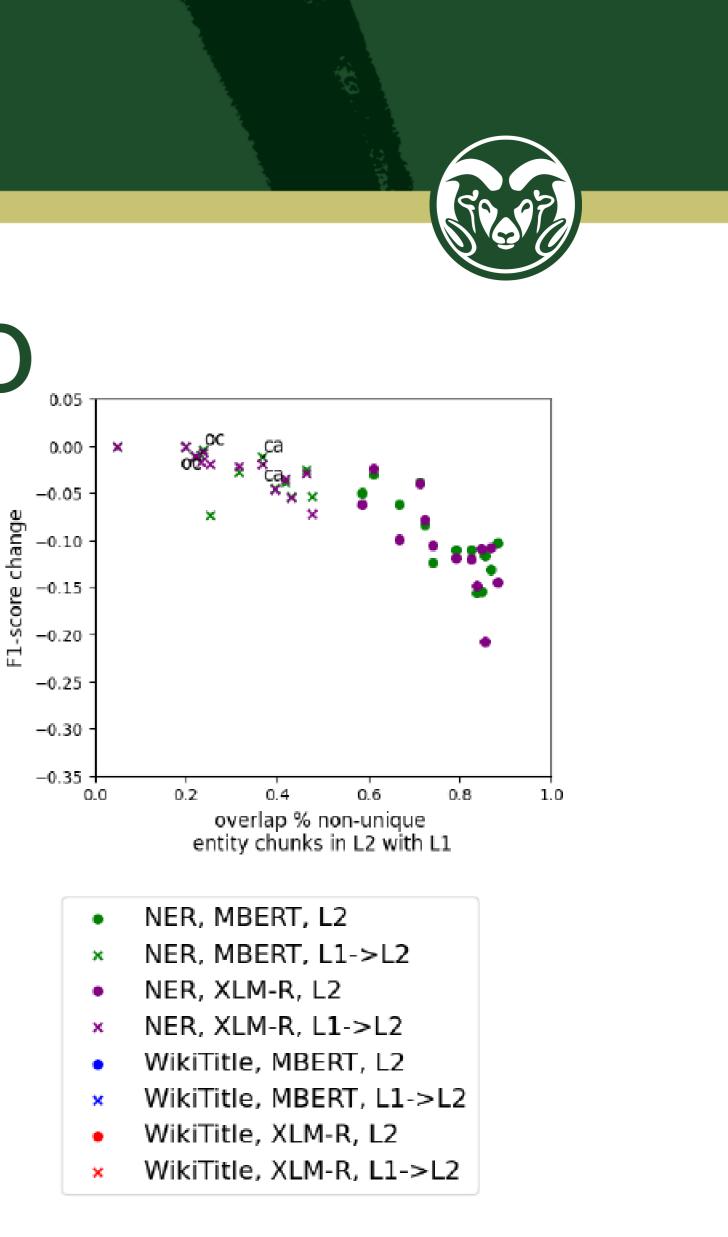


Results – Native and Transfer

- P5: combination of P3 and P4
- For three pairs involving Spanish (Spanish/Aragonese, Spanish/Asturian, and Spanish/Catalan), P5 brings the native model down to the performance level of the unperturbed cross-lingual transfer model.
- This also suggests that on these LRLs, MLLMs may be leveraging their capabilities in Spanish to achieve their initial performances.

		MBERT								XLM-R							
				N	IER			Wiki	Title			Ν	IER			Wiki	Title
Train	Test	Base	P1	P2	P3	P4	P5	Base	P4	Base	P1	P2	P3	P4	P5	Base	P4
ar	hi	67.2	64.2	68.9	67.2	67.2	67.2	63.6	63.0	67.3	67.4	70.7	67.3	67.3	67.3	75.8	75.0
hi	hi	86.7	86.5	87.2	71.3	79.0	66.7	73.8	72.5	87.5	87.2	88.1	76.6	80.7	68.3	77.8	77.1
ar	fa	45.0	43.0	44.7	45.0	45.0	44.9	79.3	77.1	43.6	42.8	40.1	43.6	43.5	43.4	78.0	73.9
fa	fa	90.3	88.0	89.1	86.5	60.8	56.7	81.6	79.1	89.4	88.2	87.4	85.5	78.2	74.1	81.0	76.5
CS	sk	82.9	82.4	87.0	78.4	82.5	77.9	80.3	75.6	78.0	77.2	86.1	73.4	78.1	73.5	80.3	73.3
sk	sk	92.6	91.7	91.0	86.4	92.1	85.0	83.5	78.5	91.5	91.1	89.8	81.5	88.6	77.5	82.3	75.1
nl	af	81.2	81.0	83.8	78.4	81.2	78.6	78.5	71.6	79.9	80.0	81.5	77.8	79.3	76.9	75.4	71.6
af	af	92.2	91.6	92.1	81.1	89.5	78.5	81.3	74.3	89.8	90.0	90.8	77.9	86.2	76.0	76.8	66.9
en	SCO	78.3	77.9	72.0	71.0	78.2	71.7	85.7	76.2	62.4	62.0	60.6	60.6	63.2	61.3	75.5	62.5
SCO	SCO	93.4	93.0	83.2	81.0	91.4	79.2	88.6	80.8	90.2	89.6	82.5	79.6	87.5	75.0	71.5	60.2
en	су	62.5	61.8	65.3	61.3	62.4	61.6	67.5	63.6	61.5	61.2	64.9	60.4	61.4	60.4	61.7	58.8
су	су	92.6	91.9	87.1	77.0	89.5	75.0	76.6	73.5	90.9	90.4	85.1	76.1	83.1	67.8	72.1	67.3
fr	br	74.3	71.8	73.5	73.3	74.2	72.8	66.6	63.1	66.3	64.2	66.6	64.7	66.3	64.5	59.3	54.0
br	br	92.8	88.4	88.2	84.5	88.8	79.9	71.1	66.1	89.1	85.8	87.1	81.3	82.8	74.1	59.3	55.2
fr	00	83.9	83.7	89.1	83.5	83.7	83.4	76.6	71.9	72.5	72.3	78.8	71.8	72.3	71.9	66.5	59.1
OC	oc	95.3	94.9	95.8	92.3	87.8	83.9	79.1	75.2	93.8	93.0	94.6	91.5	92.6	89.8	67.0	61.3
id	ms	68.7	67.7	76.7	64.8	68.5	64.8	79.9	68.4	69.7	69.5	79.9	66.2	69.5	65.8	78.3	58.4
ms	ms	92.4	92.6	83.5	81.7	81.8	70.5	82.7	71.8	92.4	91.9	89.1	71.7	79.7	59.5	80.3	62.4
it	scn	63.7	63.3	80.2	58.4	49.5	45.4	71.0	66.2	60.8	60.7	74.0	55.3	50.4	45.5	60.7	46.8
scn	scn	92.9	91.1	88.1	79.8	74.4	64.9	64.3	57.1	90.5	88.2	82.8	79.7	72.4	62.5	40.0	39.0
es	an	88.0	87.9	84.8	85.4	80.7	77.5	86.1	76.3	86.1	86.2	86.4	83.3	75.3	72.9	77.0	55.0
an	an	95.8	95.8	88.4	85.6	90.9	79.1	83.4	76.8	94.2	93.6	92.5	79.8	80.4	66.1	72.6	59.4
es	ast	90.4	90.2	86.0	85.1	89.6	84.6	84.1	77.5	84.3	84.2	86.0	77.0	84.1	76.3	76.7	59.6
ast	ast	93.6	92.8	90.1	82.7	93.3	79.7	85.2	78.4	89.6	89.2	90.1	77.7	90.0	76.4	80.3	68.0
es	ca	85.1	84.3	87.2	84.0	85.1	84.0	79.3	75.9	82.6	82.8	83.9	80.8	82.3	79.8	72.8	66.2
ca	ca	92.3	91.5	91.6	87.3	91.6	86.5	85.9	83.0	89.4	89.6	88.0	83.3	88.6	82.1	83.9	78.0

- P3: clear correlation between the vocabulary overlap percentage and the **performance** degradation for replacing named entities.
- This suggests that multilingual models' NER performance for LRLs depends to some extent on word memorization.
- Model may not be recognizing a named entity in L2, but its ability in L1 is riding for L2 due to vocabulary overlap (or memorization).



NER F1 changes in P3 perturbation

- P4: interestingly, the cross-lingual transfer models appear to be more robust to certain perturbations, such as perturbing context words.
- P5: NER performance suffers a significant drop.

0.05 0.00 -0.05change change -0.15-i -i -0.20 -0.25-0.30 -0.35 0.0 0.05 0.00 --0.05 change -0.10 -

-0.15

-0.20

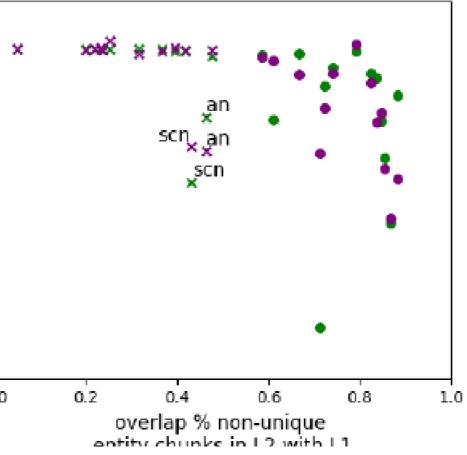
-0.25 ·

-0.30 -

-0.35

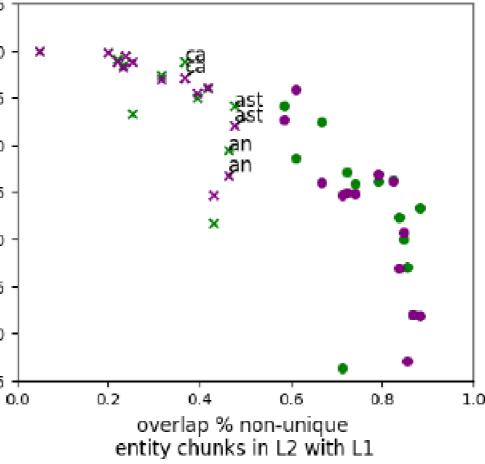
score

Ė

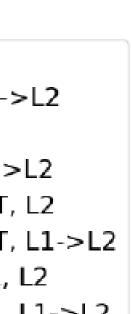


NER F1 changes in P4 perturbation

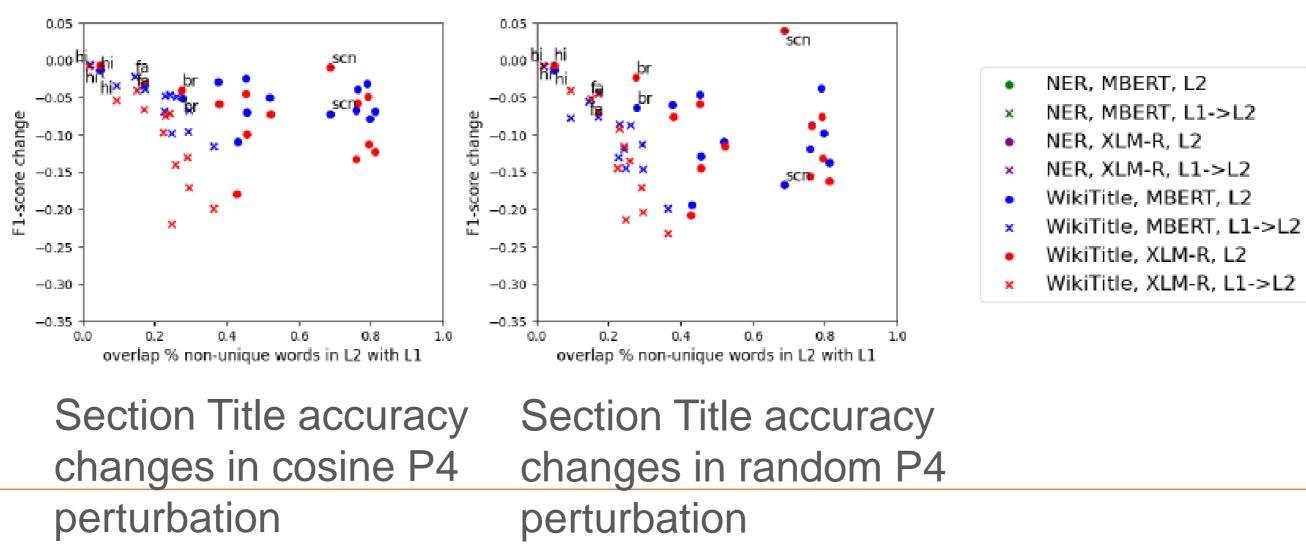
- NER, MBERT, L2
- NER, MBERT, L1->L2
- NER, XLM-R, L2
- NER, XLM-R, L1->L2
- WikiTitle, MBERT, L2
- WikiTitle, MBERT, L1->L2
- WikiTitle, XLM-R, L2
- WikiTitle, XLM-R, L1->L2

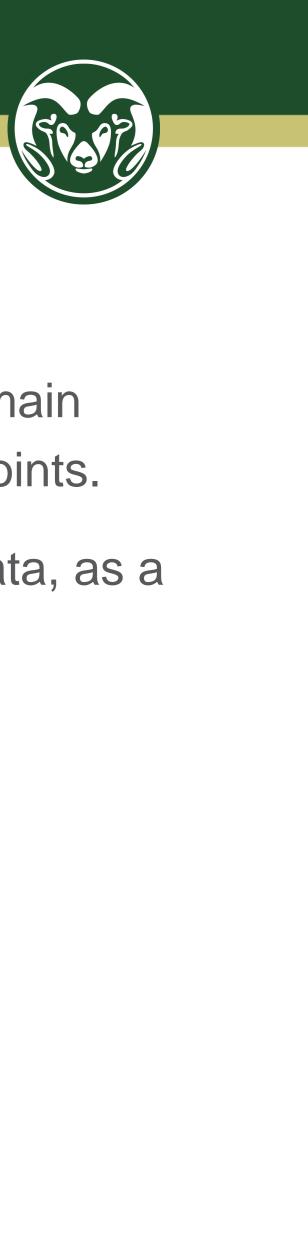


NER F1 changes in combination of P3 and P4 perturbations



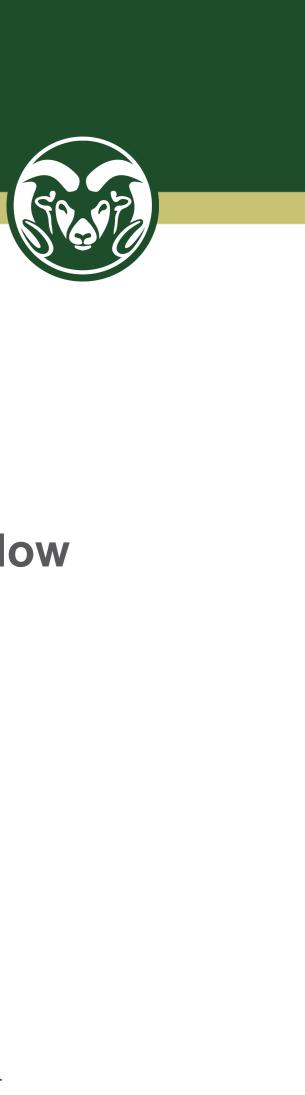
- For low overlap like French/Breton, we would expect performance under perturbation to remain **relatively unchanged** (compare Hindi), but Breton still suffers a performance loss of $\sim 4-5$ points.
- This suggests that title section task relies heavily on word memorization of the training data, as a similar drop in performance is observed when words are substituted randomly.
 - The semantic similarities of the substitute words under P4 seem to not matter.





- None of the perturbations for Arabic/Hindi have much effect in the cross-lingual setting.
 - This is expected because Arabic/Hindi languages use different native scripts, so there is a low default token overlap and consequently very minor changes.
- In the case of Arabic/Persian, which do share the same script, the same is true.
 - Because words **appearance** are so different in them.
- But Arabic/Persian cross-lingual transfer on NER is substantially lower than on Arabic/ Hindi.
 - mark ("brand") vs. mârd ("evil"), or sardard ("headache") vs. sard ("story"), while they are not semantically similar.

					M	BERT				XLM-R							
				Ν	IER			Wiki	Title			Ν	IER			Wiki	Title
Train	Test	Base	P1	P2	P3	P4	P5	Base	P4	Base	P1	P2	P3	P4	P5	Base	P4
ar	hi	67.2	64.2	68.9	67.2	67.2	67.2	63.6	63.0	67.3	67.4	70.7	67.3	67.3	67.3	75.8	75.0
hi	hi	86.7	86.5	87.2	71.3	79.0	66.7	73.8	72.5	87.5	87.2	88.1	76.6	80.7	68.3	77.8	77.1
ar	fa	45.0	43.0	44.7	45.0	45.0	44.9	79.3	77.1	43.6	42.8	40.1	43.6	43.5	43.4	78.0	73.9
fa	fa	90.3	88.0	89.1	86.5	60.8	56.7	81.6	79.1	89.4	88.2	87.4	85.5	78.2	74.1	81.0	76.5



Results – MBERT and XLMR

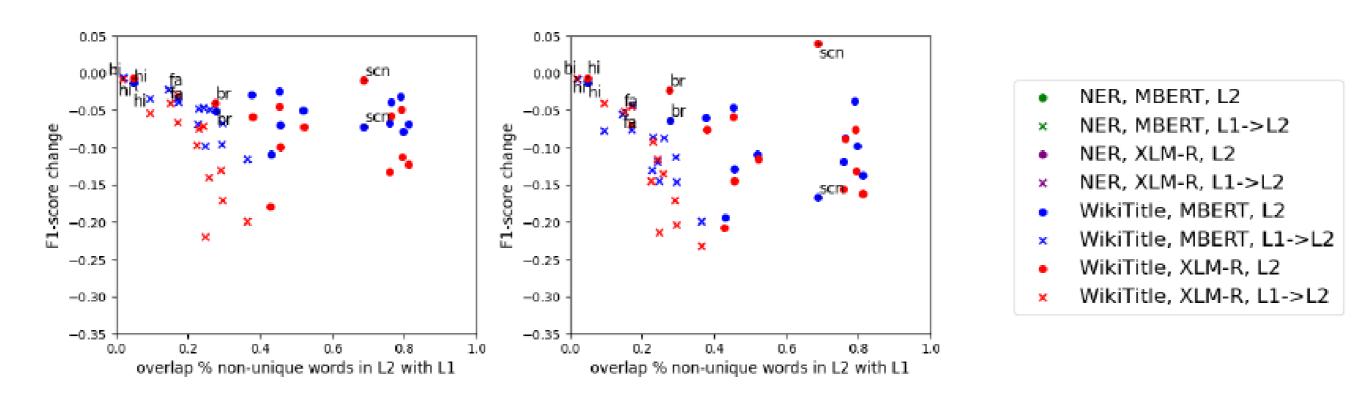
- **XLM-R** is more robust to random replacement of **B-PER tags (P1)**.
- On average, MBERT appears more robust to the perturbations we applied
- degraded performance universally.

		MBERT			XLN	I-R		
	NER: L2	avg. Δ F $_1$	NER: L1→L2	avg. Δ F $_1$	NER: L2	avg. Δ F $_1$	NER: L1→L2	avg. ΔF_1
P1	p = 0.0118	-1.00	p = 0.0046	-0.92	p = 0.0116	-0.80	p = 0.0655	-0.34
P2	p = 0.0033	-3.65	p = 0.2096	2.15	p = 0.0165	-2.33	p = 0.0246	3.42
P3	p < 0.0001	-9.66	p = 0.0013	-2.72	p < 0.0001	-10.46	p = 0.0013	-2.52
P4	p = 0.0105	-7.07	p = 0.1500	-1.80	p = 0.0004	-6.73	p = 0.1499	-1.69
P5	p < 0.0001	-16.71	p = 0.0106	-4.36	p < 0.0001	-17.62	p = 0.0090	-4.26
	Titles: L2	avg. Δ acc.	Titles: L1→L2	avg. Δ acc.	Titles: L2	avg. Δ acc.	Titles: L1→L2	avg. Δ acc.
P4	p < 0.0001	-5.38	p < 0.0001	-5.54	p = 0.0002	-7.57	p = 0.0003	-9.52

Note that even the simple perturbation of **changing context words** in the **title selection** task

Results – MBERT and XLMR

- For Section title task, native Sicilian performance in MBERT substantially exceeds XLM-R, but also suffers more under perturbation.
 - Sicilian training data is included in the pretraining data for MBERT but not for XLM-R.
- The much lower performance of the native Sicilian XLM-R model on title selection compared to NER suggests that NER fine-tuning can leverage other representations (e.g., common named entities between Italian and Sicilian).



Conclusion

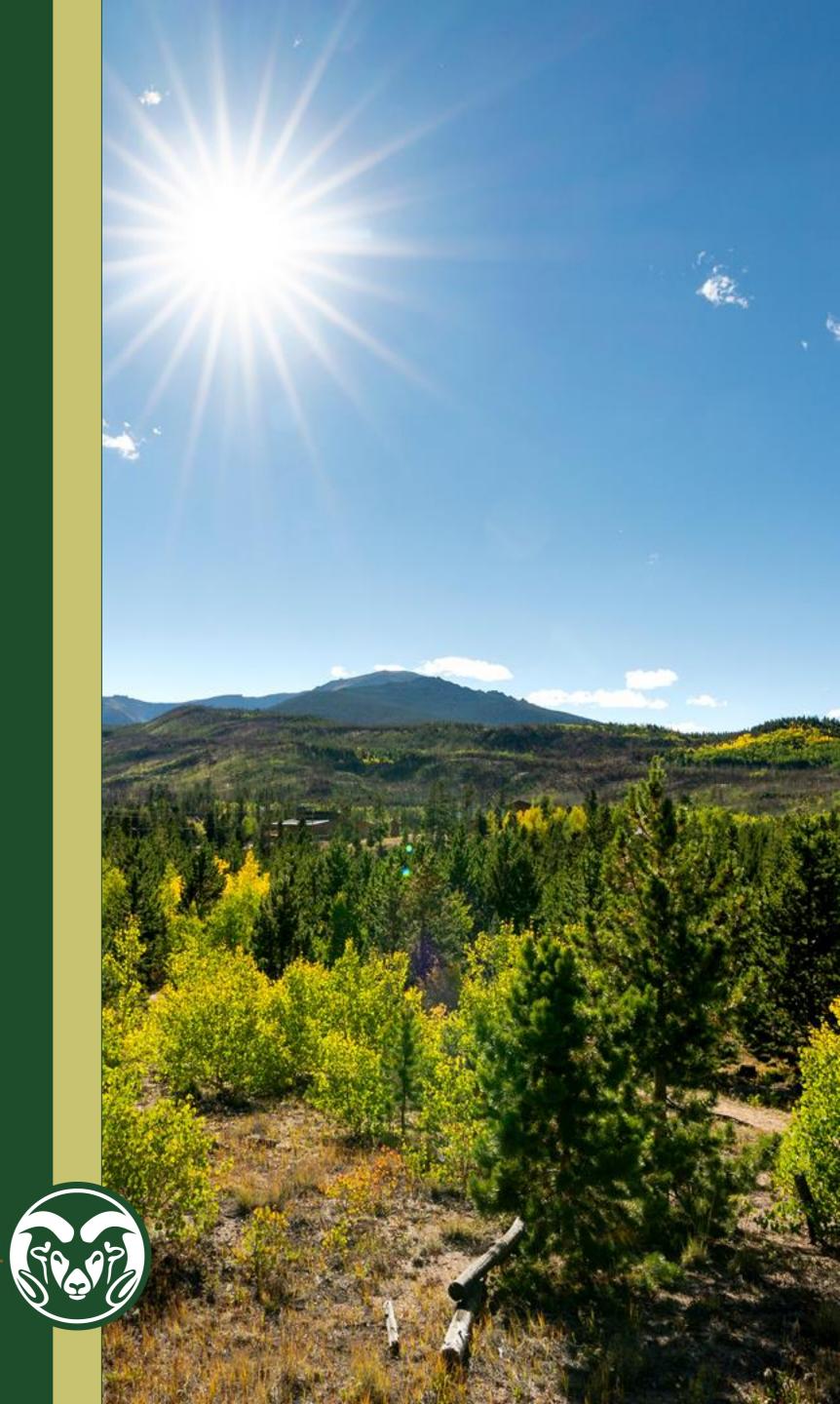
- The first time such an experimental set has been performed with an explicit \bullet focus on LRLs and cross-lingual transfer from HRLs.
- We conducted evaluations on **21 languages**, encompassing both high and \bullet low-resource languages, employing two widely recognized multilingual models, **MBERT and XLM-R**.
- Results exhibit variations across different languages, influenced by their \bullet linguistic structures and similarities.
- Our core findings can be summarized as follows: \bullet
 - There is a pronounced effect of vocabulary overlap on NER performance.
 - Although models utilizing cross-lingual transfer typically exhibit lower ____ numerical performance than models trained in a **native** LRL setting, they are often somewhat more robust to certain types of perturbations of the input.
 - Title selection in LRLs appears heavily rely on word memorization.

Discussion

- This research has been conducted on encoder models.
 - Encoder models are **older** and **smaller**, typically demand **fewer** computational resources, allowing us to perform more experiments.
 - Unlike SOTA decoder models like GPT-4, most encoder model ____ weights and processing pipelines are freely available on platforms like HuggingFace, meaning that we can directly access the embedding spaces to inform our perturbation techniques.
 - Most open-weight generative models (e.g., LLaMA 2) are **not** multilingual.
 - However, since our techniques are general, they could be applied to open-source multilingual generative models like XGLM. We do note that multilingual generative models still do not necessarily contain all the required languages.

Future Work

- These proposed test sets have the potential for further exploration, \bullet particularly in challenging tokenizers directly.
- For example, the Persian examples suggest that, although BPE \bullet tokenization methods should help LRL performance by not biasing toward HRL, similarity between sub-word tokens overvalued when optimizing the embedding space.
- This motivates an equitable consideration of lower-resource \bullet languages in building NLP models.



Thank You!

ShadiM@ColoState.edu Nikhil.Krishnaswamy@ColoState.edu

