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Building a DocRE Dataset w. xLingual Transfer
Outline

■ Purpose
– explore how to build Document-level Relation Extraction (DocRE) 

datasets with minimal human efforts

■ Method
– automatic annotation using cross-lingual transfer -> 😥
– human annotation assisted by cross-lingual transfer -> 😀

■ Contributions & Findings
– collected the first Japanese DocRE dataset
– showed that although the automatic annotation is not ready for use 

on its own, it serves as a good start point for human annotation
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Building a DocRE Dataset w. xLingual Transfer
Outline

■ Background & Motivation
– task definition: DocRE
– existing DocRE datasets
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Relation Extraction (RE)
Background

■ Task to extract relations from natural language texts
– Identify relations between entity pairs within a sentence

“The Archbishop” is the third 
episode of the first series of the 
BBC sitcom Blackadder . 

(The Archbishop, produced by, BBC)
(Blackadder,  produced by, BBC)
(The Archbishop, part of, Blackadder)

Modelentities

Data Analysis Knowledge Base 
Construction

Sentence-level RE has 
been widely studied 



05/22/2024 LREC-COLING 2024 5

Document-level Relation Extraction (DocRE)
Background

■ Sentence-level RE is over-simplified(Yao+, 2019)
– Relations exist beyond sentence boundaries

Model

"The Archbishop" is the third 
episode of the first series of the 
BBC sitcom Blackadder ( The 

Black Adder ). It is set in England 
in the late 15th century, and 
follows the exploits of the 

fictitious Prince Edmund as he is 
invested as Archbishop of 

Canterbury amid a Machiavellian 
plot by the King …

(The Archbishop, produced by, BBC)
(Blackadder,  produced by, BBC)
(The Archbishop, part of, Blackadder)
(Prince Edmund, present in work, 
Blackadder)
(Machiavellian, present in work, 
Blackadder)
… cross-sentence relations
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Document-level Relation Extraction (DocRE)
Background

■ Task to decide relations between all entity pairs in a document

decide relations based on 
information from the whole 

document

challenge

Example from DocRED (Yao+, 2019)



Focus more on evidence sentences 
relevant to current entity pair
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Evidence in DocRE(Yao+, 2019)

Background

■  Evidence: Minimal set of sentences enough for relation decision

information filtering

decide relations based on 
information from the whole 

document

challenge
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Annotating DocRE from Scratch is Difficult
Motivation

■ Heavy burden for annotators affect the quality of collected dataset

“The Archbishop” is the third 
episode of the first series of 
the BBC sitcom Blackadder . 

Identify all relations 

in this sentence. 

Identify all relations 

in this document. 
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Existing DocRE Datasets
Motivation

■ Datasets in English, Chinese and Korean are available
– collected individually despite of high human annotation costs
– Hinders DocRE research from scaling up 

Dataset Language # Instances # Docs Evidence
DocRED(Yao+, 2019) en. 50,503 4,051 Y

Re-DocRED(Tan+, 2022) en. 120,664 4,053 N

HacRED(Cheng+, 2021) zh. 56,798 7,731 N

HistRED(Yang+, 2023) kr. 9,965 5,816 Y
The docs are the 
same, while Re-
DocRED added 
some relation 

instances



05/22/2024 LREC-COLING 2024 10

Cross-Lingual Transfer (Projection)
Motivation

■ Dataset for sentence-level RE has been successfully created with 
translation-based cross-lingual transfer
– Human evaluation ensured the quality of obtained dataset

(Hennig+, 2023)



■ To explore how DocRE dataset in one language could help 
collecting DocRE dataset in another using cross-lingual transfer

■ To publish a Japanese DocRE dataset ready for use
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Purpose of This Work
Motivation

- one of the most widely-used languages for Web content
- one of the most linguistically distant languages from English
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Building a DocRE Dataset w. xLingual Transfer
Outline

■ Approaches
– automatic annotation: Re-DocREDja

– semi-automatic annotation: JacRED
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Starting from English language resources
Approach: Automatic Annotation 

■ Re-DocREDja:Translate Re-DocRED(Tan+, 2022) into Japanese

<e0:LOC> モロゴロ州は </e0:LOC>、<e1:LOC> タンザニアに </e1:LOC> ある <e2:NUM> 31 
</e2:NUM> ⾏政区のひとつ。
州都は <e3:LOC> モロゴロ </e3:LOC> 市である。

<e4:MISC> 2012年国勢調査に </e4:MISC> よると、同州の⼈⼝は<e5:NUM>2,218,492 </e5:NUM> 
⼈で、国勢調査前の予測値 <e6:NUM> 2,209,072 </e6:NUM> ⼈を上回った。

<e0:LOC> Morogoro Region </e0:LOC> is one of <e1:LOC> Tanzania </e1:LOC> 's <e2:NUM> 31 
</e2:NUM> administrative regions . 
The regional capital is the municipality of <e3:LOC> Morogoro </e3:LOC> . 
According to the <e4:MISC> 2012 national census </e4:MISC> , the region had a population of 
<e5:NUM> 2,218,492 </e5:NUM> , which was higher than the pre - census projection of <e6:NUM> 
2,209,072 </e6:NUM>.



05/22/2024 LREC-COLING 2024 14

Train a DocRE model on Re-DocREDja
Approach: Automatic Annotation 

■ The model fails to extract many relations on Japanese Wikipedia
JA: 堀直宥(ほりなおさだ、寛⽂5年11⽉17⽇(1665年12⽉23⽇) -正徳元年6⽉8⽇

(1711年7⽉23⽇))は、江⼾時代前期から中期の⼤名で、上総⼋幡藩第2代藩主。
EN: Naosada Hori (December 23, 1665 - July 23, 1711) was a feudal lord of the 

early to mid-Edo period, the second lord of the Joso Hachiman domain.

missed relation: (Naosada Hori, head of government, Joso Hachiman domain)

Topic Shift of 
Contents
Little / No contents 
about Japanese 
history / figures / 
architecture

JA: ザカリアーシュ・ヨージェフ(1924年3⽉25⽇ - 1971年11⽉22⽇)は、ハンガ
リー出⾝のサッカー選⼿、サッカー指導者。1954年のFIFAワールドカップでは決

勝戦を除く4試合にフル出場し準優勝に貢献した。
EN: Zakarias Yogev (March 25, 1924 - November 22, 1971) was a Hungarian 

soccer player and soccer coach. (He) played in all but the final four games of the 
1954 FIFA World Cup, contributing to the runners-up finish.

missed relation: (Zakarias Yogev, participant in, the 1954 FIFA World Cup)

Gap of Surface 
Structures
Logic of how 
sentences are 
organized differs 
from real Japanese
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Pipeline of Human Annotation
Approach: Semi-Automatic Annotation 

■ Annotator’s job: edit recommendations from models
– Following the pipeline of collecting DocRED(Yao+, 2019)

Wikipedia
Entity 

Recommendation

Step 1
Entity 

Recommendation 
Edition

Step 2
docs

- Relation 
Recommendation 

Edition
- Evidence 
Annotation

Step 4

Relation 
Recommendation

Step 3

Phase 1
Entity Annotation

Phase 2
Relation Annotation

Two proposals here!
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Recommend Relations with Model Predictions
Semi-Automatic Annotation: Proposal 1 

■ Utilize model trained on translated dataset to recommend relations

(𝑒𝑛𝑡!, 𝑟𝑒𝑙!, 𝑒𝑛𝑡")
(𝑒𝑛𝑡", 𝑟𝑒𝑙", 𝑒𝑛𝑡#)knowledge 

base query
human 

edit

model 
prediction

(𝑒𝑛𝑡!, 𝑟𝑒𝑙", 𝑒𝑛𝑡")
𝑒𝑛𝑡", 𝑟𝑒𝑙", 𝑒𝑛𝑡#
(𝑒𝑛𝑡#, 𝑟𝑒𝑙#, 𝑒𝑛𝑡$)
(𝑒𝑛𝑡$, 𝑟𝑒𝑙!, 𝑒𝑛𝑡")

dataset
(𝑠𝑟𝑐)

dataset'
(𝑡𝑔𝑡)

(𝑒𝑛𝑡!, 𝑟𝑒𝑙", 𝑒𝑛𝑡")
(𝑒𝑛𝑡", 𝑟𝑒𝑙", 𝑒𝑛𝑡#)
(𝑒𝑛𝑡#, 𝑟𝑒𝑙#, 𝑒𝑛𝑡$)

(𝑒𝑛𝑡!, 𝑟𝑒𝑙", 𝑒𝑛𝑡")
(𝑒𝑛𝑡", 𝑟𝑒𝑙", 𝑒𝑛𝑡#)
(𝑒𝑛𝑡#, 𝑟𝑒𝑙#, 𝑒𝑛𝑡$)
(𝑒𝑛𝑡$, 𝑟𝑒𝑙!, 𝑒𝑛𝑡")

cross-lingual transfer

Prior Works

This Work

human 
edit

①

②
③
④

①

②

𝑒𝑛𝑡!
𝑒𝑛𝑡"

𝑒𝑛𝑡#
𝑒𝑛𝑡$

𝑒𝑛𝑡!
𝑒𝑛𝑡"

𝑒𝑛𝑡#
𝑒𝑛𝑡$



05/22/2024 LREC-COLING 2024 17

Refine Relation Label Set
Semi-Automatic Annotation: Proposal 2

■ Merge labels based on:
– Frequency: select most-frequent relation labels
– Hierarchy: 
■ Merge sub-properties into super-properties

– E.g. author -> creator
■ Merge inverse properties

– E.g. has part(s) -> part of
– Similarity: pretrained graph embedding: GraphVite(Zhu+, 2019)

■ Reduced relation labels from 96 to 35
– While keeping >88% relation instances in Re-DocRED

author

has part(s)

https://graphvite.io/docs/latest/pretrained_model.html
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Collected Dataset: JacRED
Semi-Automatic Annotation

■ Japanese Document-level Relation Extraction Dataset

Dataset Language # Instances # Docs Evidence
DocRED(Yao+, 2019) en. 50,503 4,051 Y

Re-DocRED(Tan+, 2022) en. 120,664 4,053 N

HacRED(Cheng;, 2021) zh. 56,798 7,731 N

HistRED(Yang+, 2023) kr. 9,965 5,816 Y

JacRED ja. 42,241 2,000 Y
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Building a DocRE Dataset w. xLingual Transfer
Outline

■ Dataset Analysis & Experiments
– superiority of our annotation approach
– usefulness of our collected dataset



# Sentences # Entities # Relations # Evidences
DocRED(Yao+, 2019) 7.98 19.51 12.45 1.60

Re-DocRED(Tan+, 2022) 7.98 19.45 29.77 0.88

JacRED 8.39 17.87 17.87 1.67
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Statistics: Comparison with Existing Datasets
Dataset Analysis

■ JacRED has its advantages over existing datasets as a general 
language resource
– Even without the distinctiveness of language

# Sentences, # Entities and # Relations averaged over documents
# Evidences averaged over relation instances

more relation instances more evidence instances
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Statistics: Number of Human Edits
Dataset Analysis

■ Sample 400 documents from JacRED and calculate the number of 
edit steps before reaching at final annotations
– Starting from model predictions reduces the number of human edit 

steps

# Recommends. # Deletions # Substitutions # Additions
Model Predictions 6,500 1,266 224 2,740

Knowledge Base 
Queries

3,200 1,459 113 6,233

more recommendations Fewer instances to add



Precision Recall F1
JacRED (1,400) 64.76 73.29 68.73

Re-DocREDja (3,053) 56.14 53.67 54.87
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Training on Translated Dataset
Experiments

■ Evaluate DREEAM(Ma+, 2023) trained with Re-DocREDja on JacRED
– Number of documents used during training indicated in parenthesis

Models trained on Re-DocREDja 
suffers from low recall.



Precision Recall F1
JacRED (1,400) 64.76 73.29 68.73

Re-DocREDja (3,053) 56.14 53.67 54.87

Re-DocREDja (1,400) 55.52 51.77 53.56
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Training on Translated Dataset
Experiments

■ Evaluate DREEAM(Ma+, 2023) trained with Re-DocREDja on JacRED
– Number of documents used during training indicated in parenthesis

The performance gap between 
models trained on Re-DocREDja 

and JacRED is evident under the 
same setting.

Models trained on Re-DocREDja 
suffers from low recall.
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Building a DocRE Dataset w. xLingual Transfer
Summary

■ Purpose
– explore how to build Document-level Relation Extraction (DocRE) 

datasets with minimal human efforts

■ Method
– automatic annotation using cross-lingual transfer -> 😥
– human annotation assisted by cross-lingual transfer -> 😀

■ Contributions & Findings
– collected the first Japanese DocRE dataset
– showed that although the automatic annotation is not ready for use 

on its own, it serves as a good start point for human annotation

dataset
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