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Introduction
● Availability of advanced AI methods has contributed to the growth of applications in 

knowledge-intensive tasks, e.g.:
○ QA
○ Fact-checking

● Limitations of LLM in updating facts after training: outdated or incorrect information 
(hallucinations).

Conversation with ChatGPT (26.04.2024)
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Motivation
● Leveraging Knowledge Graphs (KGs) holds 

promise in addressing challenges of 
knowledge-intensive applications.

● Development of domain-specific knowledge 
graphs is hindered by cost and complexity.

● Small KGs suffer from:

○ limited relational structures
○ sparse entity interactions
○ reduced contextual information

Example of KG.
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Motivation
● Empowering small-scale KGs will facilitate 

the development of KG-based systems, 
particularly for:

○ Small companies and startups
○ Research groups and academia
○ Less popular or niche domains

● How can we utilize existing resources for 
that?
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Motivation
● Idea:

Integrating external KG as knowledge source to 
empower small-scale KG.

● Aim: 

Developing a framework for enriching vector 
representations of domain-specific knowledge 
graphs by linking them with well-established, 
general-purpose KGs.
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Framework 
● We propose a generic and modular framework for enriching small and domain-specific KGs 

(DKG) with general-purpose KGs (GKG) using alignment and linking operation:
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Alignment and linking
We perform alignment and linking without requiring manual annotation, leveraging the textual entity 
labels:

1. We acquire a representation vector          for each entity      based on three components:

2. For each entity in the DKG, we find k nearest neighbors in the GKG, based on the vectors        .  
3. For each pair of neighbors found, we create an artificial triple                 .
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Representation learning
● For the linked graph                                                                   , we train the representation 

model and evaluate its performance on KG completion task.

● We propose a weighted loss function to mitigate entity alignment's negative effects between two 
considered KGs:
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Experimental methodology
● Existing datasets are not suitable for evaluating methods aimed at enriching the embeddings 

of KGs.
● We designed a custom evaluation procedures tailored to this context.
● We simulated different stages in developing a KG by:

1. Triple sampling
2. Node sampling
3. Relation sampling

Each strategy is parameterized by the probability 𝑝 of keeping a triple, node, or relation in 
the sampled graph.
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We conducted empirical studies in synthetic and real-world scenarios:

● Synthetic scenario:

○ controlled environment
○ perfect overlap of knowledge domains
○ simplified evaluation

● Real-world scenario:

○ external KG differs from DKG
○ mimics real scenarios
○ limited experimental control

Experimental methodology
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Results: Synthetic scenario
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Results on WN18RR (more results in the paper).

Experiments settings:

● Datasets: WN18RR, FB15k-237, WD50K
● Sampling: triple, node, relation
● p: 0.4, 0.6, 0.8
● Representation model:  RotatE



Results: Synthetic scenario
Key Findings:

● Significant improvement by linking GKG.

● Effectiveness depends on sampling setting.

● Effectiveness varies among datasets due to 
inherent characteristics.

● Achieved 44.9% / 0.0% / 16.7% Hits@10 
boost on WN18RR / FB15k-237 / WD50K 
with only 40% of triples.
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Results: Real-world scenario
Experiments settings:

● Datasets pairs: 
○ WN18RR - ConceptNet
○ WN18RR - FB15k-237

○ FB15k-237 - ConceptNet
○ FB15k-237 - YAGO3-10

○ WD50K - FB15k-237
○ WD50K - YAGO3-10
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Results on WN18RR (more results in the paper).

● Sampling: triple
● p: 0.4, 0.6, 0.8
● Representation model:  RotatE



Results: Real-world scenario
Key Findings:

● Highest efficacy improvement observed under rigorous conditions (40% of triples).

● Achieved notable Hits@10 boost on WN18RR-ConceptNet and WD50K-FB15k-237 pairs,  
suggesting framework effectiveness.

○ WN18RR – ConceptNet:

○ WD50K – FB15k-237:

● Importance of choosing a well-suited GKG for the DKG.
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Conclusion 
Framework

● Proposed general and modular framework for enriching embeddings of small scale KGs.
● Utilized straightforward alignment method based on textual embeddings of entities and 

their neighborhood.
● Proposed weighted loss function mitigates negative effects of entity alignment.

Extensive Experimentation

● Conducted evaluation in synthetic and real-world scenarios, that simulate early KG 
development stages.

● Results show significant performance improvement on downstream tasks.
● Degree of improvement varies based on specific DKG and linked general-purpose GKG.

Implications and Future Directions

● Utilizing GKGs strengthens emerging KGs, enhancing their utility and effectiveness.
● Research signals potential pathway for future exploration in enriching small-scale KGs.
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Thank you for your attention!
● Code: github.com/graphml-lab-pwr/empowering-small-scale-kg

● Contact: albert.sawczyn@pwr.edu.pl 
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scenario
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Results: Synthetic scenario
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Results on WN18RR Results on FB15k-237



Results: Synthetic scenario
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Results on WD50K



Results: Real-world scenario
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Ablation study: loss 
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Comparative analysis of predicted 
scores on the training set



Statistics of the original datasets
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Statistics of the sampled datasets
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