

Evaluating Unsupervised Dimensionality Reduction Methods for Pretrained Sentence Embeddings

Gaifan Zhang¹, Yi Zhou², Danushka Bollegala³ Columbia University¹, Cardiff University², University of Liverpool³

Problems with sentence embeddings

- 1. storing pre-computed sentence embeddings requires larger memory/disk space
- 2. the computation time of the inner-products between two sentence embeddings increases linearly with the dimensionality of the embedding
- trade-off between the dimensionality and the accuracy of sentence embeddings

Motivation

Can we reduce the dimensionality of pre-computed sentence embeddings without significantly sacrificing the performance in downstream tasks that use those *dimensionality-reduced* sentence embeddings?

Post-Processing Dimensionality Reduction

- Given $\mathcal{D}_{\text{train}} = \{s_1, s_2, \dots, s_n\}, M(s) = \vec{s} \in \mathbb{R}^d$
- Learn $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ where d' < d

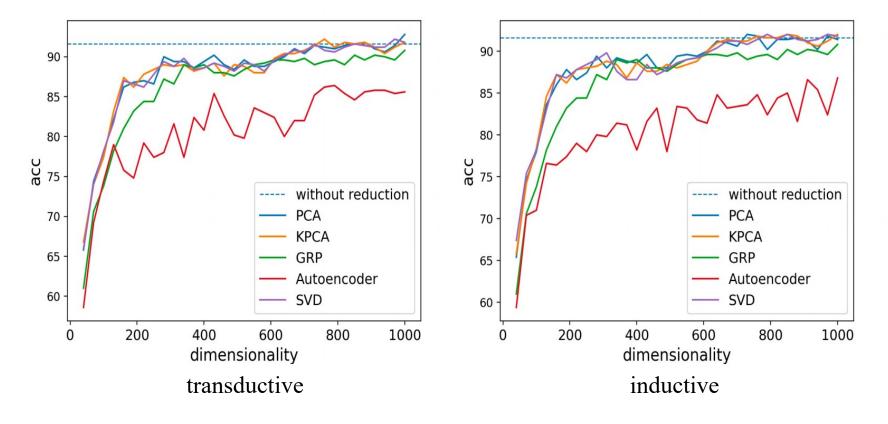
where *M* is the pretrained sentence encoder, $\mathcal{D}_{\text{train}}$ is a set of train sentences, *d* is the original dimensionality, and *d'* is the reduced dimensionality


- <u>5 unsupervised DR methods</u>
 - Principal Component Analysis (PCA)
 - Kernel PCA (KPCA)
 - Gaussian Random Projection (GRP)
 - Autoencoder
 - Truncated Singular Value Decomposition (SVD)

- <u>6 sentence encoders</u>
 - all-mpnet-base-v2 (mpnet)
 - stsb-bert-base (sbert-b)
 - msmarco-roberta-base-v2 (roberta)
 - paraphrase-xlm-r-multilingual-v1 (xml-r)
 - stsb-bert-large (sbert-l)
 - sup-simcse-roberta-large (simcse)

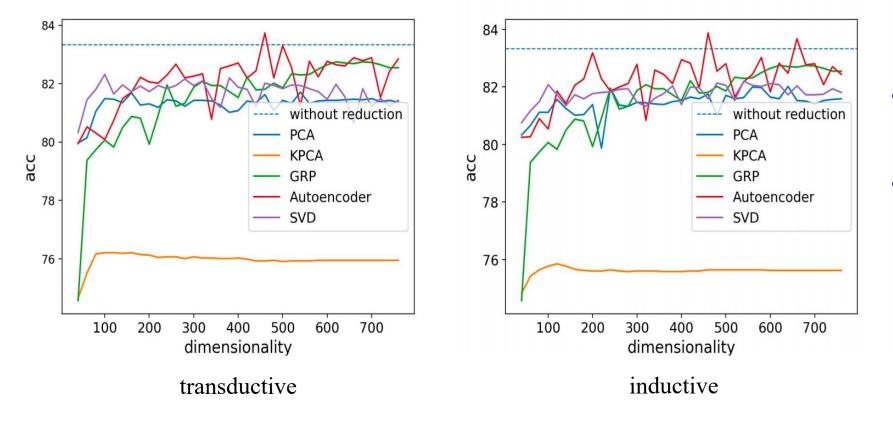
- 3 downstream tasks
 - Semantic Textual Similarity Prediction (STS-B)
 - Question Classification (TREC)
 - Textual Entailment (SICK-E)

- <u>2 settings</u>
 - transduction (specificity)
 - induction (generalization)
- 2 evaluation indicators
 - accuracy
 - time cost


Results – **STS-B** Task Performance

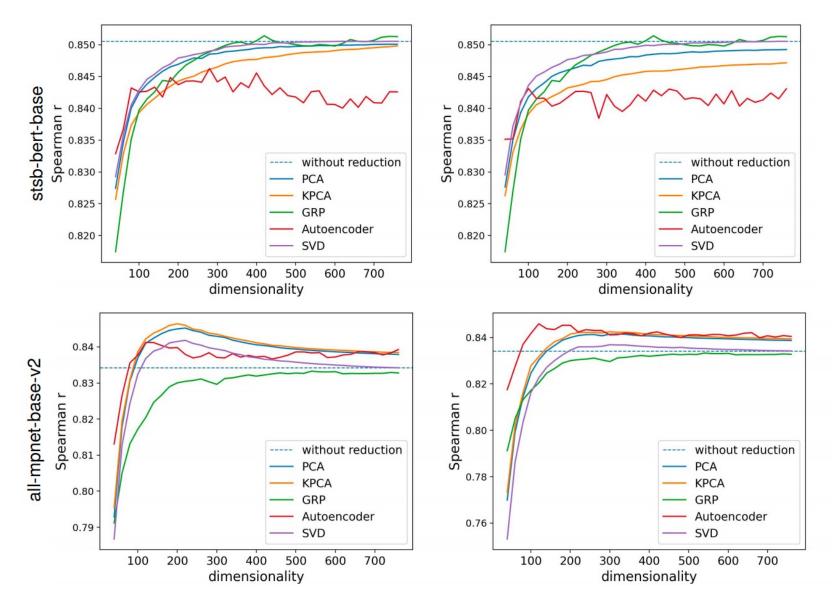
- high performance of PCA and KPCA
- same performance of GRP in both transductive and inductive settings
- reduced embeddings improves performance in some cases

Performance of the original **simcse** sentence embeddings and its reduced versions


Results – **TREC** Task Performance

- similar performance of PCA, KPCA and SVD
- unstable and poor performance of autoencoder

Performance of the original simcse sentence embeddings and its reduced versions


Results – SICK-E Task Performance

- poor performance of KPCA
- relatively good performance of autoencoder in this case

Performance of the original mpnet sentence embeddings and its reduced versions

Results – Performance on different encoders

diverse performance ofsame method on differentsentence encoders for thesame task

Performance of sentence embeddings on STS-B

Results – Training and inference times

Method	Training Time (s)	Inference time (s)
PCA	2.08	0.0049
KPCA	37.98	0.7883
SVD	2.57	0.0089
Autoencoder	101.16	0.1479
GRP	0.03	0.0080

Training and inference times measured on the test set of STS-B under the inductive setting, with **mpnet** reduced to 300 dimensions.

- fast training and inference time of GRP, PCA and SVD (matrix projection)
- autoencoders and KPCA are both slow to train and infer with
 - backpropagation and iterations of autoencoders
 - kernel matrix of KPCA

Conclusion

- We evaluated unsupervised dimensionality reduction methods for pretrained sentence embeddings using multiple NLP tasks and benchmarks under transductive and inductive settings.
- PCA performs consistently well across encoders and tasks. PCA can reduce the dimensionality by almost 50%, without incurring a significant loss in performance.
- Reducing the dimensionality improves performance over the original high-dimensional sentence embeddings produced by some PLMs in some tasks.