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Problems with sentence embeddings

1. storing pre-computed sentence embeddings requires larger
memory/disk space

2. the computation time of the imnner-products between two sentence
embeddings increases linearly with the dimensionality of the
embedding

> trade-off between the dimensionality and the accuracy of sentence
embeddings



Motivation

Can we reduce the dimensionality of pre-computed

sentence embeddings without significantly sacrificing

the performance 1n downstream tasks that use those
O dimensionality-reduced sentence embeddings?



Post-Processing Dimensionality Reduction

* GivenD,,. =1{5{, S5, ..., S}, M(s) =5 € R4
* Learn f: R¢ — R % whered' <d

where M 1s the pretrained sentence encoder, D,..., 1s a set of train sentences,
d 1s the original dimensionality, and d’ 1s the reduced dimensionality



Evaluation Framework

e 5 unsupervised DR methods

* Principal Component Analysis (PCA)
* Kernel PCA (KPCA)

* Gaussian Random Projection (GRP)
* Autoencoder

* Truncated Singular Value Decomposition (SVD)



Evaluation Framework

* 6 sentence encoders

* all-mpnet-base-v2 (mpnet)

* stsb-bert-base (sbert-b)

* msmarco-roberta-base-v2 (roberta)

* paraphrase-xIm-r-multilingual-v1 (xml-r)
* stsb-bert-large (sbert-1)

* sup-simcse-roberta-large (simcse)



Evaluation Framework

e 3 downstream tasks

* Semantic Textual Similarity Prediction (STS-B)
* Question Classification (TREC)
* Textual Entailment (SICK-E)



Evaluation Framework

e 2 settings

e transduction (specificity)
* induction (generalization)

e 2 evaluation indicators

e accuracy

*fime cost



Results — STS-B Task Performance
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Performance of the original simese sentence embeddings and its reduced versions

* high performance of

PCA and KPCA

same performance of
GRP in both
transductive and
inductive settings

reduced embeddings
improves performance
1n some cases



Results — TREC Task Performance
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similar performance of
PCA, KPCA and SVD

unstable and poor
performance of
autoencoder



Results — SICK-E Task Performance
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* poor performance of
KPCA

* relatively good
performance of
autoencoder in this case



Results — Performance on difterent encoders

stsb-bert-base
Spearmanr
o o
S &
o w

0.825

0.820

0.84 1

o
[eo]
N

all-mpnet-base-v2
Spearman r
o
@

0.79 1

----- without reduction
— PCA

—— KPCA

—— GRP

—— Autoencoder
— SVD

100 200 300 400 500 600 700
dimensionality

2

©

w
)

o

®

o
:

----- without reduction
— PCA

= KPCA

—— GRP

—— Autoencoder
— SVD

100 200 300 400 500 600 700
dimensionality

0.850 A

0.845

r
o
©
e
o

Spearman
o o
©® ®
w w
o w

----- without reduction
— PCA

—— KPCA

—— GRP

—— Autoencoder
— SVD

0.84 |

0.82 1

Spearmanr
o
o]
o

o

g

(o]
A

0.76 1

100 200 300 400 500 600 700
dimensionality

without reduction
PCA

KPCA

GRP

Autoencoder

SVD

100 200 300 400 500 600 700
dimensionality

* diverse performance of
same method on different
sentence encoders for the
same task

Performance of sentence embeddings
on STS-B



Results — Training and inference times

 fast training and inference time

Method Training Time (s) Inference time (S) of GRP, PCA and SVD (matrix
PCA 2.08 0.0049 projection)
KPCA 37.98 0.7883
SVD 2 57 0.0089 e autoencoders and KPCA are

' ' both slow to train and infer
Autoencoder 101.16 0.1479 with
GRP 0.03 0.0080

* backpropagation and

iterations of autoencoders
Training and inference times measured on the test set of STS-B under the

inductive setting, with mpnet reduced to 300 dimensions. e kernel matrix of KPCA



Conclusion

* We evaluated unsupervised dimensionality reduction methods for pre-
trained sentence embeddings using multiple NLP tasks and
benchmarks under transductive and inductive settings.

* PCA performs consistently well across encoders and tasks. PCA can
reduce the dimensionality by almost 50%, without incurring a
significant loss in performance.

* Reducing the dimensionality improves performance over the original
high-dimensional sentence embeddings produced by some PLMs 1n
some tasks.



