
TransCoder
.::.

Qiushi Sun
qiushisun@u.nus.edu

May 2, 2024

TransCoder ::. Qiushi Sun .:: May 2, 2024 1 / 17

Introduction
-

Paper: TransCoder: Towards Unified Transferable Code Representation Learning
Inspired by Human Skills

Authors: Qiushi Sun, Nuo Chen, Jianing Wang, Xiang Li, Ming Gao

TransCoder ::. Qiushi Sun .:: May 2, 2024 2 / 17

Overview

1 Backgrounds

2 TransCoder

3 Empirical Results & Analysis

TransCoder ::. Qiushi Sun .:: May 2, 2024 3 / 17

Backgrounds
- Code Pre-trained Models

■ Pre-trained language models have advanced
the SOTA across various NLP tasks.

■ The success of NL applications has led to their
adaptation in code.

However, for applications, fine-tuning these models
is task/language-specific.

Question: Can we integrate code knowledge from different tasks/languages?

TransCoder ::. Qiushi Sun .:: May 2, 2024 4 / 17

Backgrounds
- Code Pre-trained Models

■ Pre-trained language models have advanced
the SOTA across various NLP tasks.

■ The success of NL applications has led to their
adaptation in code.

However, for applications, fine-tuning these models
is task/language-specific.

Question: Can we integrate code knowledge from different tasks/languages?

TransCoder ::. Qiushi Sun .:: May 2, 2024 4 / 17

Backgrounds
- Code Pre-trained Models

■ Pre-trained language models have advanced
the SOTA across various NLP tasks.

■ The success of NL applications has led to their
adaptation in code.

However, for applications, fine-tuning these models
is task/language-specific.

Question: Can we integrate code knowledge from different tasks/languages?

TransCoder ::. Qiushi Sun .:: May 2, 2024 4 / 17

Backgrounds
- How do humans learn to program?

Recap: How did we learn multiple PLs and become proficient in using them?

Generally, we:

■ Master one PL by writing code, debugging, and adding comments.

■ Then, learn additional languages.

TransCoder ::. Qiushi Sun .:: May 2, 2024 5 / 17

Backgrounds
- How do humans learn to program?

Recap: How did we learn multiple PLs and become proficient in using them?

Generally, we:

■ Master one PL by writing code, debugging, and adding comments.

■ Then, learn additional languages.

TransCoder ::. Qiushi Sun .:: May 2, 2024 5 / 17

Backgrounds
- How do humans learn to program?

Recap: How did we learn multiple PLs and become proficient in using them?

It’s the same for models! Code representation learning can be divided into two
dimensions: Task and Language, which share similar principles and underlying logic.

Therefore, enabling models to perform continual learning in different scenarios,
encouraging knowledge sharing, is very promising.

TransCoder ::. Qiushi Sun .:: May 2, 2024 6 / 17

Backgrounds
- How do humans learn to program?

Recap: How did we learn multiple PLs and become proficient in using them?

It’s the same for models! Code representation learning can be divided into two
dimensions: Task and Language, which share similar principles and underlying logic.

Therefore, enabling models to perform continual learning in different scenarios,
encouraging knowledge sharing, is very promising.

TransCoder ::. Qiushi Sun .:: May 2, 2024 6 / 17

TransCoder - Learning Like Human Programmers
- Cross-Task Learning

Defect

Python Code

def Fibonacci(n):

	 if n == 0:

	 	 return 0

	 elif n in [1,2]: return 1

	 	 return Fibonacci(n-1) + Fibonacci(n-2)

Python Code:

def Fibonacci_Number(index):

	 arr = [0]*(index+1)

	 arr[0] = 0

	 arr[1] = 1

	 arr[2] = 1

	 for i in range(3, index+1):

	 	 arr[i] = arr[i-1] + arr[i-2]

	 return arr[index]

// Java Code:

public int fibonacci(int n) {

 if (n == 0) {

 return 0;

 } else if (n = 1) {

 return 1;

 } else {

 return fibonacci(n - 1) + fibonacci(n - 2);

 }

}

Doc: Return the Fibonacci number.

Code Translation

Code Summarization

Code Clone Detection

Code Defect Detection

Fig: Cross-task code representation learning

■ The knowledge acquired in pre-training phase
has a gap between the downstream tasks.

■ A huge difference in the amount of data
between different tasks.

■ Due to the catastrophic forgetting, training
results for each task cannot be reused.

However, performing multiple code-related tasks (e.g., debugging, writing docs) should
not cancel each other out but rather reinforce each other!

TransCoder ::. Qiushi Sun .:: May 2, 2024 7 / 17

TransCoder - Learning Like Human Programmers
- Cross-Language Learning

Taking the CodeSearchNet
1
as an example.

Adequate Average Limited

Fig: Cross-lang code representation learning

■ Tuning and saving separate model instances
for each PL is costly.

■ A significant imbalance between different PLs

■ Collecting and pre-processing code data are
quite tedious.

But ... Different PLs share similar programming
principles!

1
CodeSearchNet challenge: Evaluating the state of semantic code search, arXiv:1909.09436, 2019

TransCoder ::. Qiushi Sun .:: May 2, 2024 8 / 17

TransCoder
- Knowledge-acquisition

Our solution: Acquiring cross-task and cross-language “knowledge” through continual
learning among all prevalent sources.

So... what is the carrier of knowledge? A transferable knowledge prefix!

TransCoder ::. Qiushi Sun .:: May 2, 2024 9 / 17

TransCoder
- Knowledge-acquisition

Our solution: Acquiring cross-task and cross-language “knowledge” through continual
learning among all prevalent sources.

So... what is the carrier of knowledge? A transferable knowledge prefix!

TransCoder ::. Qiushi Sun .:: May 2, 2024 9 / 17

TransCoder - The Knowledge Prefix
- How code-related knowledge are passed down?

Code Translation

Clone Detectiondef max(a, b): return b if b > a else a

Returns the maximum of two inputs

Source Task Training Target Task Specification

...

Defect Detection

Code Summarization

def max(a, b): return a if a = b or a > b else b

defect
non-defect

def max(a, b): return b if b > a else a

int max(int a, int b){return (b>a)?b:a;}

CodePTM

Tunable Prefix

def fib(n): ...def fibonacci(n): ...

Universal Knowledge Prefix

Semantically similar?

Source Task Target Task

Knowledge Injection

Knowledge Acquisition

Knowledge Utilization

The prefix will first acquire cross-task/language knowledge from sources, and then
apply it to unseen task/language through prefix concatenation.

TransCoder ::. Qiushi Sun .:: May 2, 2024 10 / 17

TransCoder - The Knowledge Prefix
- How code-related knowledge are passed down?

Code Translation

Clone Detectiondef max(a, b): return b if b > a else a

Returns the maximum of two inputs

Source Task Training Target Task Specification

...

Defect Detection

Code Summarization

def max(a, b): return a if a = b or a > b else b

defect
non-defect

def max(a, b): return b if b > a else a

int max(int a, int b){return (b>a)?b:a;}

CodePTM

Tunable Prefix

def fib(n): ...def fibonacci(n): ...

Universal Knowledge Prefix

Semantically similar?

Source Task Target Task

Knowledge Injection

Knowledge Acquisition

Knowledge Utilization

The prefix will first acquire cross-task/language knowledge from sources, and then
apply it to unseen task/language through prefix concatenation.

TransCoder ::. Qiushi Sun .:: May 2, 2024 10 / 17

TransCoder - Pipeline
- Source Task Training

def max(a, b): return b if b > a else a

Returns the maximum of two inputs

Source Task Training

... ...

Defect Detection

Code Summarization

def max(a, b): return a if a = b or a > b else b

defect
non-defect

CodePTM

Tunable Prefix

Universal Knowledge Prefix

Source Task

Knowledge Acquisition

■ Add a set of prefixes to a CodePTM.

■ It will continuously learn across several
tasks or programming languages alongside
the model.

■ The sample sizes for each learning phase
are kept similar.

Now, we have a set of prefixes that have “absorbed” a vast amount of code knowledge.

TransCoder ::. Qiushi Sun .:: May 2, 2024 11 / 17

TransCoder - Pipeline
- Target Task Specification

Code Translation

Clone Detection

Target Task Specification

...

def max(a, b): return b if b > a else a

int max(int a, int b){return (b>a)?b:a;}

def fib(n): ...def fibonacci(n): ...

Semantically similar?

Target Task

Knowledge Utilization

■ Utilize existing prefixes as initialization for
the next stage.

■ Incorporate (potentially minimal)
task-specific data for further training.

The learned knowledge from the source tasks
can be freely combined and applied to
downstream tasks.

TransCoder ::. Qiushi Sun .:: May 2, 2024 12 / 17

TransCoder - Performance
- Cross-Task Learning

Presenting experimental results using PLBART and CodeT5 as backbones.

Methods
CLS2Trans Sum2Trans CLS2Sum Trans2Sum Sum2CLS Trans2CLS

BLEU EM BLEU EM BLEU BLEU
Clone
F1

Defect
Acc

Clone
F1

Defect
Acc

CodeT5
Fine-Tuning 81.63 65.80 81.63 65.80 19.56 19.56 94.97 64.35 94.97 64.35
TransCoder 81.43 67.00 82.12 68.20 20.39 19.77 93.70 66.58 95.39 66.36

PLBART
Fine-Tuning 78.17 62.70 78.17 62.70 17.93 17.93 92.85 62.27 92.85 62.27
TransCoder 71.00 58.40 69.50 51.00 18.62 18.25 92.28 64.58 92.91 64.98

Table: The performance on the code cross-task learning

TransCoder ::. Qiushi Sun .:: May 2, 2024 13 / 17

TransCoder - Performance
- Cross-Language Learning

Settings Ruby JavaScript Go Python Java PHP Overall

CodeT5
Fine-Tuning 15.24 16.21 19.53 19.90 20.34 26.12 19.56
TransCoder 16.88 18.45 20.40 20.17 21.28 27.28 20.74

PLBART
Fine-Tuning 13.97 14.13 18.10 19.33 18.50 23.56 17.93
TransCoder 15.32 15.00 18.67 19.27 19.44 23.52 18.54

Table: Comparison between cross-language learning by TransCoder and full fine-tuning

TransCoder ::. Qiushi Sun .:: May 2, 2024 14 / 17

TransCoder - Analysis
- Ablation Studies

Methods
Sum2CLS Trans2CLS

Clone
F1

Defect
Acc

Clone
F1

Defect
Acc

CodeT5
Random Knowl. 92.38 60.76 93.68 60.29
Universal Knowl. 93.70 66.58 95.39 66.36

PLBART
Random Knowl. 90.96 61.02 91.15 61.64
Universal Knowl. 92.28 64.58 92.91 64.98

Table: Ablation study of universal code-related
knowledge.

■ Compared with randomly initialized prefixes.

■ Significant performance improvements from
TransCoder.

TransCoder ::. Qiushi Sun .:: May 2, 2024 15 / 17

TransCoder - Analysis
- Low Resource Learning

Settings Ruby JavaScript Go Python Java PHP Overall

5% Data
Fine-Tuning 13.96 14.68 18.04 18.30 18.74 23.42 17.86
TransCoder 14.21 15.14 19.16 19.36 18.23 23.68 18.30

10% Data
Fine-Tuning 15.22 15.12 19.06 19.20 19.32 24.95 18.81
TransCoder 16.05 16.63 20.21 20.07 20.48 26.20 19.94

20% Data
Fine-Tuning 15.23 16.01 19.44 19.91 20.38 25.51 19.41
TransCoder 16.11 17.25 20.28 20.11 20.73 26.96 20.24

Table: Varying degrees of low-resource cross-language learning by TransCoder, using code
summarization and CodeT5 backbone for evaluation.

TransCoder ::. Qiushi Sun .:: May 2, 2024 16 / 17

The End

Thank You!

TransCoder ::. Qiushi Sun .:: May 2, 2024 17 / 17

	Backgrounds
	TransCoder
	Empirical Results & Analysis

