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Introduction

In this work we collect and analyse data representing the essay writing

process from start to finish, by recording every keystroke from multiple
writers participating in our study.

We describe our data collection methodology, the characteristics of the

resulting dataset, namely KUPA-KEYS, and the assignment of proficiency
levels to the texts
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Introduction: Why Keylog data?

e A great deal of information about the writing process can be captured

e We can potentially detect when learners are struggling with their writing
e We might potentially enable supportive interventions to aid the learner
e Insights into linguistic creativity and language complexity in production

e Detect malpractice in education or assessment settings - Generative Al
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Introduction: KUPA-KEYS Dataset

We have compiled o dataset of texts, keystroke logs and metadata for
public release, which can be used for any of the aforementioned
purposes, including research around automated essay assessment.

It contains o copied text and creative essay written in English by 1,006
crowdsourced participants, both native speakers ond non-native
speakers of the language.

The King's College London & Université Paris Cité Keys (KUPA-KEYS)
dataset is publicly available for non-commercial use* and our research
code for data collection is open-source

4
* https://huggingface.co/datasets/ALTACambridge/KUPA-KEYS
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Related Work: Other Datasets

Keystroke datasets generated from participants transcribing a fixed-text
are more common (Allen, 2010; Giot et al, 2012) with the largest being
reported in Dhakal et al. (2018) consisting of 136 million keystrokes.

On the contrary, datasets that include free-text are not as extensive, with
one of the earliest ones being Clarkson | (Vural et al, 2014), comprised of
840,000 keystrokes produced by 39 participants

One of the largest datasets available is described in Sun et al. (2016),
known as the Buffalo dataset, comprising 2.14 million keystrokes from 148
participants (both transcription and free-text included)
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Related Work: Comparisons

Murphy et al. (2017) provides the Clarkson Il dataset, where keystroke data
were collected in an uncontrolled environment from 103 subjects, yielding
a total of 12.6 million keystrokes.

Our dataset is distinct from the ones above because we focus on essay
writing by both learners aond native speakers of English, with both
text-copy and free-text composition.

A new Kaggle shared task was launched in October 2023*. KUPA-KEYS is
smaller, but includes logs from a transcription task, our essays are scored
on a greater scale, and the alphanumeric characters are preserved.

* https://wwwkaggle.com/competitions/linking-writing-processes-to-writing-quality
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Data Collection: Protocol

(’p Recruited 1045 participants through Prolific crowdsourcing platform
wie) Participants were directed to Qualtrics for data collection
N

O After metadata collection they were redirected to our GitHub pages

@ JavaScript keylogger in each page captured their keystroke data
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Data Collection: Protocol

D prolific After the survey, participonts were
redirected from Qualtrics to our text
qualtrics™ authoring site

O

GitHub Pages

Participants were required to complete
two writing tasks. o copy-text task & an
essay-writing task
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Data Collection: Copy-Text task

e 300 word excerpt from Steve Jobs' Speech at Stanford University
e Contains 197 distinct English Digraphs
e Extensive enough to be used for user-specific baselines

e Used by Sun et al. 2016 (Buffalo Dataset) - Data Augmentation
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Data Collection: Essay-Writing task

e “Just for fun' prompts from the English learning platform Write & Improve*
e We chose “just for fun" prompts as opposed to level-specific prompts

e They are deliberately creative

e They are suitable across different proficiency levels

e We selected ones which tend not to elicit personal information

e [Each participant was randomly allocated to one prompt (10 total)

* https://writeandimprove.com
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Data Collection: Essay-Writing task (examples)

A Special Place.

If you could be anywhere in the world right now, where would you choose
to be? Describe the place. Why do you want to be there?

Unforgettable.

Write a short story with the title ‘Unforgettable’. Your story must have a
beginning, a middle and an end. The end must be surprising.
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Data Collection: Participants

e After a pilot study we found that it took ~30 min for completion (total)

e We paid each participant £7.50 GBP/ $9.20 USD for the full survey

e Participants spent on average 339 min [copy: 26 min, essay: 13.4 min]

e Essay threshold: initially 250 words - reduced to 150 to attract beginners

e We recruited 1,045 participants in three phases of crowdsourcing
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Data Collection: Common Rejection Reasons

e Essays less than 80% of the minimum stated word length
e Copied and pasted text from external sources (even for copy-text task!)

e Jyped in another language and transloted at the end

e Most participants were asked to withdraw their submission before rejecting
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Data Collection: Common Rejection Reasons

Task 1 Events

Task 1 Events
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Data Processing

e Automatically graded each essay with W& AP wa s°°“3 CEFR leve
e Three qualifled human assessors graded each essay é Ei;ii
e 30 participants were rejected by human assessors 5 g?:;i
i
e Reasons: off-topic, offensive, potentially distressing ; gg::i
e Removed 4 more from post-processing (tablet/mobile) 1? éiil
e Therefore, the public release features 1006 essays 12 83::
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Dataset Description: KUPA-KEYS

We conducted a thorough data cleaning process to streamline the
generation of three primary tables, conveniently saved in CSV format

KUPA-KEYS-META KUPA-KEYS-TASK-1
* Metadata * copy-text task keylog events
* Demographic information
* Post-processing data J

* Human markers’ evaluations
* Automarker evaluations

+ Original prompts

* Final submitted text *+ essay-writing task keylog events

KUPA-KEYS-TASK-2
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Dataset Description: KUPA-KEYS

KUPA-KEYS-TASK-<i>

id time type key key_code alt_key ctrl_key meta_key shift_key is_repeat range_start range_end text
xa2 563.4 down i Keyl - - True - 0 0
xa2 564.7  capture - - - - - T
xa2 564.7 input G E . . 1 1 il
xa2 691.6 up i Keyl - - True - 1 1
xa2  708.0 up "Shift’ ShiftLeft - - - - 1 1
xa2  708.3 down Space - - - 1 1
xa2  709.6 input . E C 2 2
xa2 835.6 up i Space - - - 2 2
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Inter-annotator Agreement

H1
400

H1: evenly distributed
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(Gwet 2002; Yannakoudakis and Cummins 2015)
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Inter-annotator Agreement

Spearman’s rank correlations

H1 H2 H3 weal

H1 - 0.633 | 0.711 | 0.574

H2 | 0.633 = 0.567 | 0.563

H3 | 0.711 | 0.567 - 0.514
W&l | 0.574 | 0.563 | 0.514 —

Avg | 0.639 | 0.588 | 0.598 | 0.550

Strong and significant correlations on the whole. Judgements of the
human assessors correlote with each other more than they do with the
automarker
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Inter-annotator Agreement

RMSD
H,, | Hi | H2 | H3

Hi [0622 | - . .
H2 | 1288 | 1487 | -
H3 | 1.371 | 1.695 | 2586 | -
W&l | 1543 | 1.708 | 2.241 | 1.770

H1 is closest to the mean of human marks and has the lowest deviation

from other markers including the automarker. H2 is involved in the highest
RMSD values.

Inter-annotator Agreement
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Data Analysis: Demographics - Age

20

Age distribution: 20% of the participants between 18 and 23 years old,
median age 26 years, 20% of the participants above 32 years old.
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Data Analysis: Demographics - Native Language

Count

nativelang

2004

175 4

150 4

125 4
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Polish was the most commonly reported native language among our
participants, constituting 20% of the responses. It was closely followed by
English and Portuguese, each comprising 1/% of the total.
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Data Analysis: Survey Completion Duration
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Data Analysis: Survey Completion Duration

K-S = sup, |Fo(z) — Fy(z)]

We compared the survey completion duration between native English
speakers (NS) and non-native English speakers (NNS) using the
Kolmogorov-Smirnov (K-S) test.

The calculated K-S statistic was found to be 0.10, with a p-value of 0.10,
suggesting no significant difference between NS and NNS in terms of the
time required to complete the survey.
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Data Analysis: Marks

Weok correlation between the time spent on the essay task and the

average mark received, both from human markers and the automarker
(r=0.09, o = 0.003)

Negative correlation between the time they spent on the copy-text task
ond the average mark received on the essay-writing task, suggesting that
fast typists could generally achieve higher marks (r=-0.26, p < 0.001)

A strong correlation was evident between the number of words and the

average CEFR score (r=0.51, p < 0.001), aligning with expectations based on
previous studies
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Conclusion & Future Work

e We introduce the new KUPA-KEYS dataset which includes keystroke data
from 1,006 participants

e Participants completed two tasks: a copy-text task of 300 words, and an
essay-writing task responding to one of 10 prompts

e The dataset also includes metadata about the individual participants,
such as age, location, level of English and other languages known

e We annotated the essays with proficiency assessments from both
human assessors and a pre-trained automarker

e We found a decent level of agreement amongst these assessors and
initial analyses revealed some interesting results
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Conclusion & Future Work

The dataset carries the potential for further analyses of typing patterns,
indications of complex word and character sequences, and identification

of hierarchical structures in the writing process per Ballier et al. (2019) and
Leijten et al. (2019)
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Conclusion & Future Work

We note that keystroke data can empower writing support for authors if
we can successfully identify when writers are struggling with linguistic
constructions (Conijn et al, 2021). This support could be in the form of
writing suggestions, a chatbot or dictionary look up tools.
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Conclusion & Future Work

Other future work includes the use of features derived from keystroke
dota to enhance Transformer-based assessment models (Mizumoto and
Eguchi, 2023)
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Conclusion & Future Work

Finally, the continuing challenge of generative Al text detection is
acknowledged in recent literature (Krishna et al, 2023; Sadasivan et al,
2023), signifying a necessity for increased endeavour in this domain.

Our exploration may potentially facilitate the advent of novel research
towards generative-Al text detection based on event-based information
including keystrokes.
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