Unleashing the Power of Imbalanced Modality Information for Multi-modal Knowledge Graph Completion

Yichi Zhang, Zhuo Chen, Lei Liang, Huajun Chen, Wen/Zhang

COLING 2024

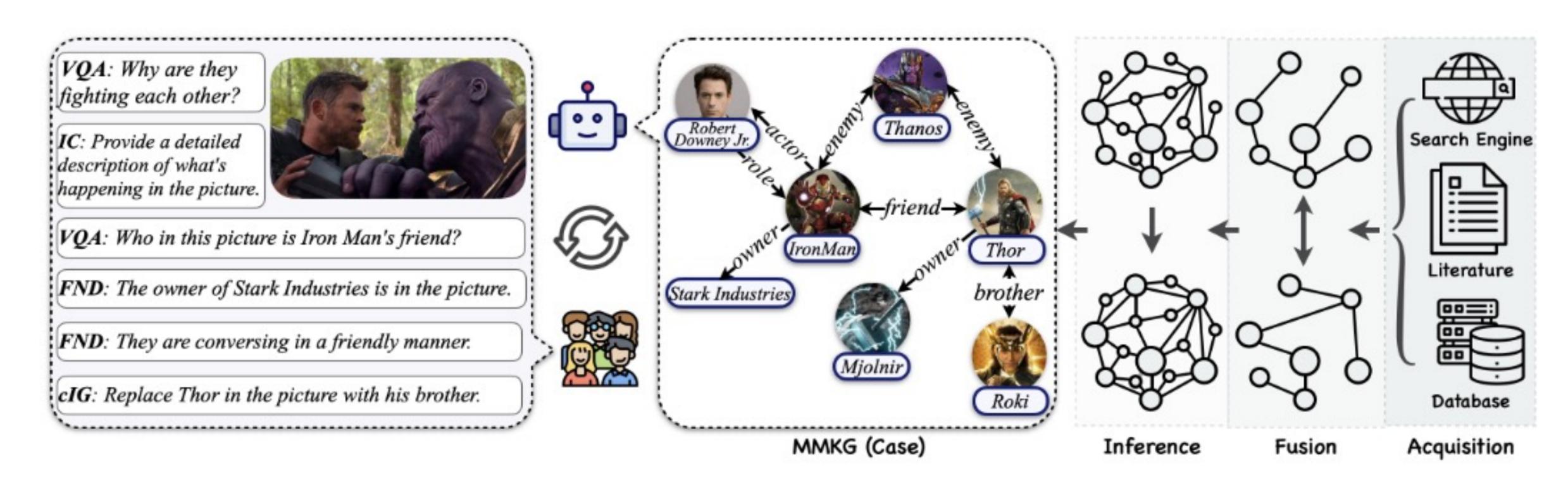
Presenter: Yichi Zhang

Date: 04/30/2024

01. Research Background

- Multi-modal Knowledge Graph
- Imbalance of Multi-modal Knowledge Graphs

Multi-modal Knowledge Graphs



Multi-modal Knowledge Graphs

[Preprint] Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey

Knowledge Graph Completion

蚂蚁集团 ANT GROUP

Stephen Curry (born in Akron, Ohio) is an Warriors in NBA.

playsFor

Golden State Warriors

Golden State Warriors is a basketball club in San Francisco, California.

American professional basketball player. He plays for Golden State

Akron, Ohio

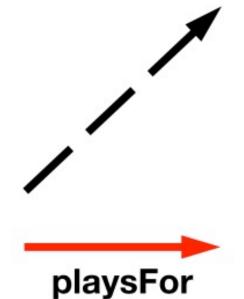
Akron is located in the northeast of Ohio near the Cuyahoga river.

Cleveland **Cavaliers**

Cleveland Cavaliers is a basketball club in Cleveland, Ohio.

LeBron James

LeBron James (born in Akron, Ohio) is a professional basketball player. He played for Cleveland Cavaliers and Miami Heat in NBA. He joined Los Angeles Lakers in 2018.

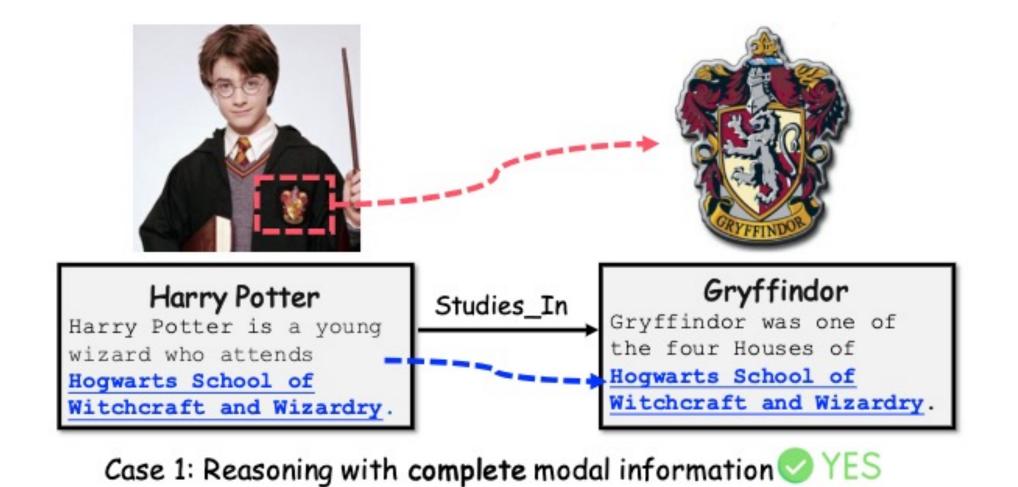


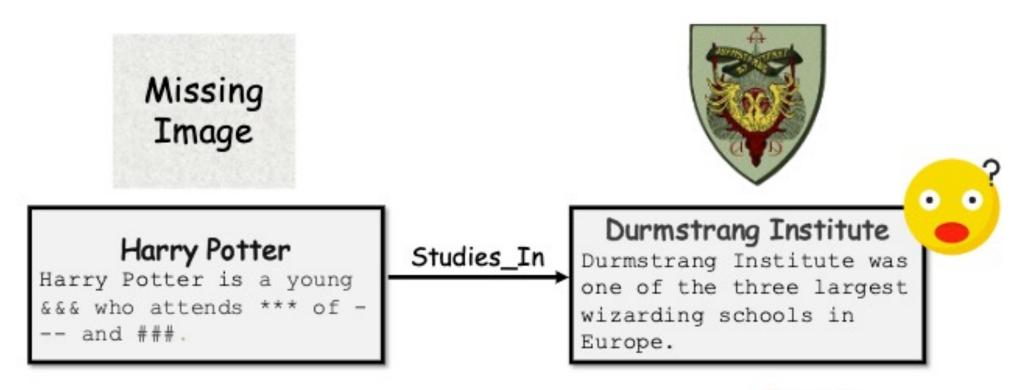
Lakers

Los Angeles Lakers is a basketball club in Los Angeles,

Los Angeles

California.





Case 2: Reasoning with limited modal information 🔯 NO

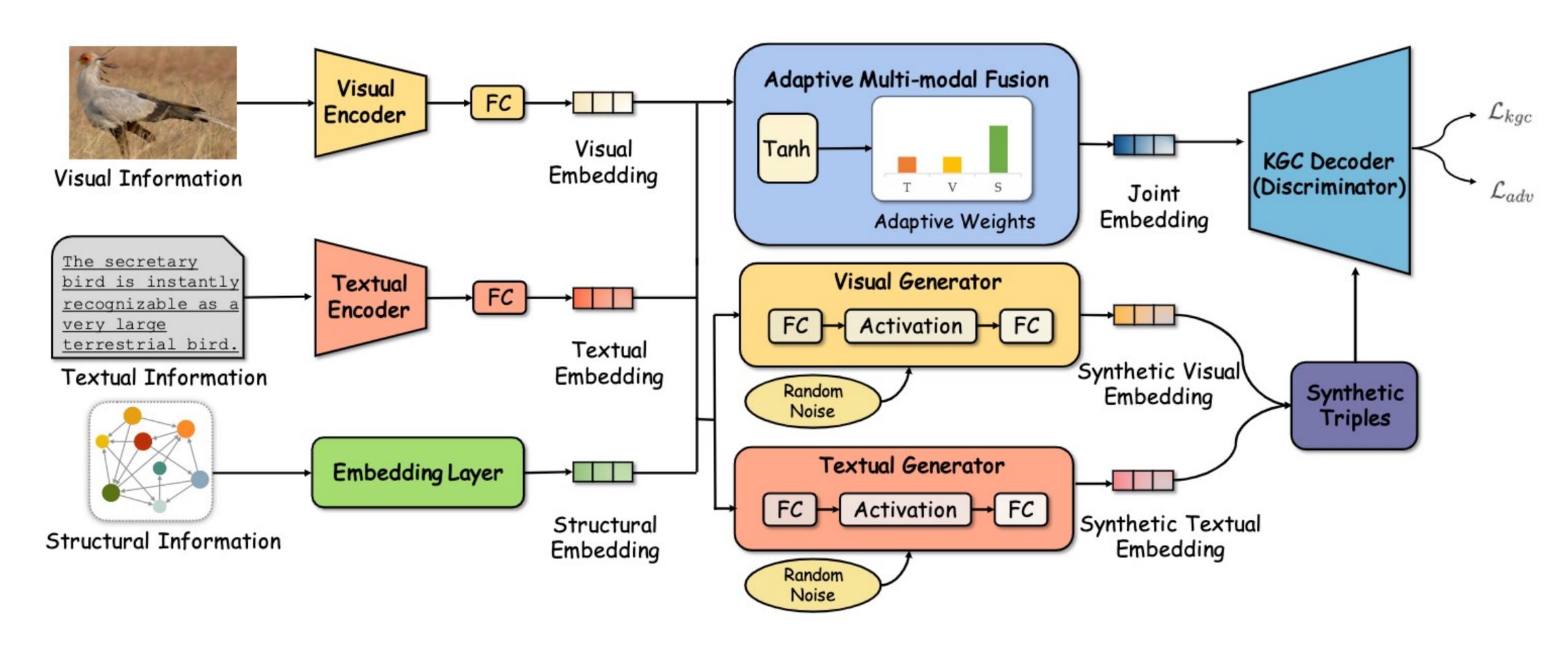
Multi-modal Knowledge Graph Completion

Imbalance in Multi-modal Knowledge Graph

02. Our Method

- Overview
- Adaptive Multi-modal Fusion
- Modality Adversarial Training

Overview of Our Method



Overview of Our AdaMF-MAT framework

Multi-modal Feature Encoding

Encoding Visual and Textual Information for each entity

$$f_v = \frac{1}{|\mathcal{V}_e|} \sum_{img_i \in \mathcal{V}_e} \text{PVE}(img_i)$$

$$e_v = \mathbf{W}_v \cdot f_v + \mathbf{b}_v$$

Adaptive Multi-modal Fusion

Get the joint embedding of each entity:

$$\alpha_m = \frac{\exp(w_m \oplus \tanh(e_m))}{\sum_{n \in \mathcal{M}} \exp(w_n \oplus \tanh(e_n))} \qquad e_{joint} = \sum_{m \in \mathcal{M}} \alpha_m e_m$$

Triple plausibility

$$\mathcal{F}(h, r, t) = ||h_{joint} \circ r - t_{joint}||$$

Training MMKGC model:

$$\mathcal{L}_{kgc} = \frac{1}{|\mathcal{T}|} \sum_{(h,r,t)\in\mathcal{T}} \left(-\log \sigma(\gamma - \mathcal{F}(h,r,t)) - \sum_{i=1}^{K} p_i \log \sigma(\mathcal{F}(h_i',r_i',t_i') - \gamma) \right)$$

Modality Adversarial Training

Multi-modal Embedding Generator

$$\mathbf{G}_m(e_s, z) = \mathbf{W}_2 \cdot \delta(\mathbf{W}_1 \cdot [e_s; z] + \mathbf{b}_1) + \mathbf{b}_2$$

- Synthetic Embedding → Synthetic Entity → Synthetic Triples
- Adversarial Training Loss:

$$\mathcal{L}_{adv} = \frac{1}{|\mathcal{T}|} \sum_{(h,r,t)\in\mathcal{T}} \left(-\log \sigma(\gamma - \mathcal{F}(h,r,t)) - \frac{1}{|\mathcal{S}|} \sum_{\substack{(h^*,r^*,t^*)\\ \in \mathcal{S}(h,r,t)}} \log \sigma(\mathcal{F}(h^*,r^*,t^*) - \gamma) \right)$$

Training Objective

The pseudo-code of our framework:

- Iterative training for G and D
- Multi-task learning

$$\min_{\mathbf{D}} \mathcal{L}_{kgc} + \min_{\mathbf{D}} \max_{\mathbf{G}} \lambda \mathcal{L}_{adv}$$

Algorithm 1: Pseudo-code for training AdaMF-MAT

Input: A batch of training triple \mathcal{B} sampled from \mathcal{T} , the multi-modal information of the entities', the AdaMF model \mathbf{D} , the generator \mathbf{G} .

Output: The MMKGC model **D** trained with MAT.

- 1 for each triple $(h, r, t) \in \mathcal{B}$ do
- 2 // Training D
- G Get the joint embeddings $oldsymbol{h}_{joint}, oldsymbol{t}_{joint}$.
- Calculate the triple score $\mathcal{F}(h, r, t)$ and the nagative triple scores $\mathcal{F}(h'_i, r'_i, t'_i)$.
- 5 Calculate the kgc loss \mathcal{L}_{kqc} .
- Generate the adversarial example set S with G.
- 7 Calculate the adversarial loss \mathcal{L}_{adv} .
- 8 Calculate the overall loss $\mathcal{L}_{kgc} + \lambda \mathcal{L}_{adv}$.
- Back propagation and optimize D.
- 10 // Training G.
- Get the joint embeddings h_{joint}, t_{joint} .
- Generate the adversarial example set S with G.
- Calculate the adversarial loss \mathcal{L}_{adv} .
- Back propagation and optimize G.

15 **end**

03. Experiments and Evaluation

- Experiment Settings
- Main Results
- Further Exploration

Experiment Settings

- Dataset: DB15K, MKG-W, MKG-Y
- Task: Link Prediction (Knowledge Graph Completion)
- Evaluation Metrics: MRR, Hit@K (K=1,3,10)

Table 1: Statistical information of the benchmarks.

Dataset	$ \mathcal{E} $	$ \mathcal{R} $	#Train	#Valid	#Test
DB15K	12842	279	79222	9902	9904
MKG-W	15000	169	34196	4276	4274
MKG-Y					

$$\mathbf{MRR} = rac{1}{|\mathcal{T}_{test}|} \sum_{i=1}^{|\mathcal{T}_{test}|} (rac{1}{r_{h,i}} + rac{1}{r_{t,i}})$$

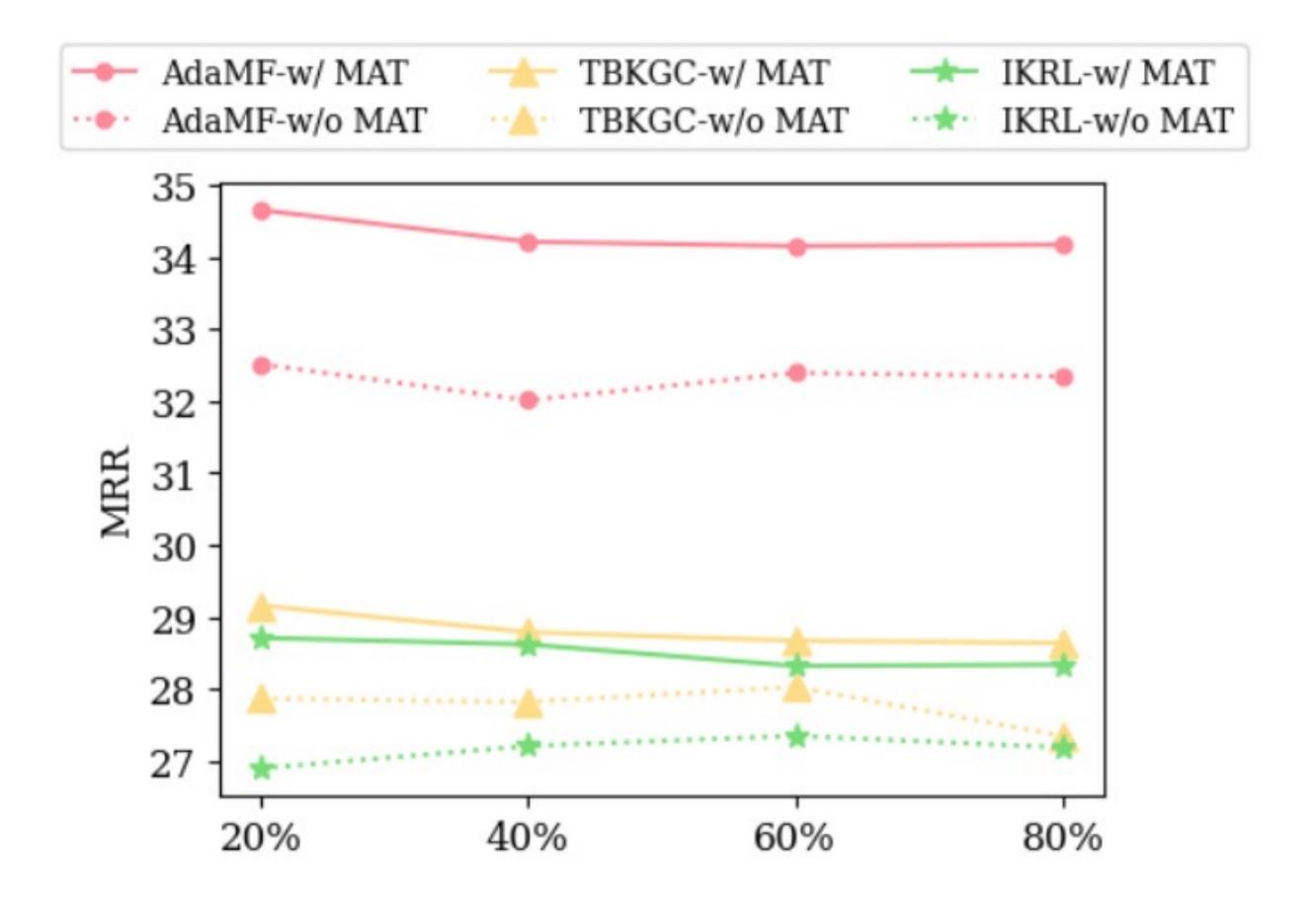
$$\mathbf{Hit}@\mathbf{K} = \frac{1}{|\mathcal{T}_{test}|} \sum_{i=1}^{|\mathcal{T}_{test}|} (\mathbf{1}(r_{h,i} \leq K) + \mathbf{1}(r_{t,i} \leq K))$$

Main Experiment Results

Link Prediction Results on Three MMKGs

Model		DB15K			MKG-W			MKG-Y					
		MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10
	TransE	24.86	12.78	31.48	47.07	29.19	21.06	33.20	44.23	30.73	23.45	35.18	43.37
	TransD	21.52	8.34	29.93	44.24	25.56	15.88	32.99	40.18	26.39	17.01	33.60	40.31
Unimodal	DistMult	23.03	14.78	26.28	39.59	20.99	15.93	22.28	30.86	25.04	19.33	27.80	35.95
KGC	ComplEx	27.48	18.37	31.57	45.37	24.93	19.09	26.69	36.73	28.71	22.26	32.12	40.93
	RotatE	29.28	17.87	36.12	49.66	33.67	26.80	36.68	46.73	34.95	29.10	38.35	45.30
	PairRE	31.13	21.62	35.91	49.30	34.40	28.24	36.71	46.04	32.01	25.53	35.84	43.89
	GC-OTE	31.85	22.11	36.52	51.18	33.92	26.55	35.96	46.05	32.95	26.77	36.44	44.08
	IKRL	26.82	14.09	34.93	49.09	32.36	26.11	34.75	44.07	33.22	30.37	34.28	38.26
	TBKGC	28.40	15.61	37.03	49.86	31.48	25.31	33.98	43.24	33.99	30.47	35.27	40.07
Multi-modal	TransAE	28.09	21.25	31.17	41.17	30.00	21.23	34.91	44.72	28.10	25.31	29.10	33.03
KGC	MMKRL	26.81	13.85	35.07	49.39	30.10	22.16	34.09	44.69	36.81	31.66	39.79	45.31
NGC	RSME	29.76	<u>24.15</u>	32.12	40.29	29.23	23.36	31.97	40.43	34.44	31.78	36.07	39.09
	VBKGC	30.61	19.75	37.18	49.44	30.61	24.91	33.01	40.88	37.04	33.76	38.75	42.30
	OTKGE	23.86	18.45	25.89	34.23	34.36	28.85	36.25	44.88	35.51	31.97	37.18	41.38
	KBGAN(TransE)	25.73	9.91	36.95	51.93	29.47	22.21	34.87	40.64	29.71	22.81	34.88	40.21
	KBGAN(TransD)	23.74	9.34	33.51	47.94	29.67	22.38	35.24	40.80	28.73	20.99	34.64	40.76
Negative	MANS	28.82	16.87	36.58	49.26	30.88	24.89	33.63	41.78	29.03	25.25	31.35	34.49
Sampling	MMRNS(RotatE)	29.67	17.89	36.66	51.01	34.13	27.37	37.48	46.82	35.93	30.53	39.07	45.47
	MMRNS(SOTA)	32.68	23.01	37.86	51.01	<u>35.03</u>	28.59	37.49	<u>47.47</u>	35.93	30.53	39.07	45.47
Ours	AdaMF	32.51	21.31	39.67	51.68	34.27	27.21	37.86	47.21	38.06	33.49	40.44	45.48
	AdaMF-MAT	35.14	25.30	41.11	52.92	35.85	29.04	39.01	48.42	38.57	34.34	40.59	45.76

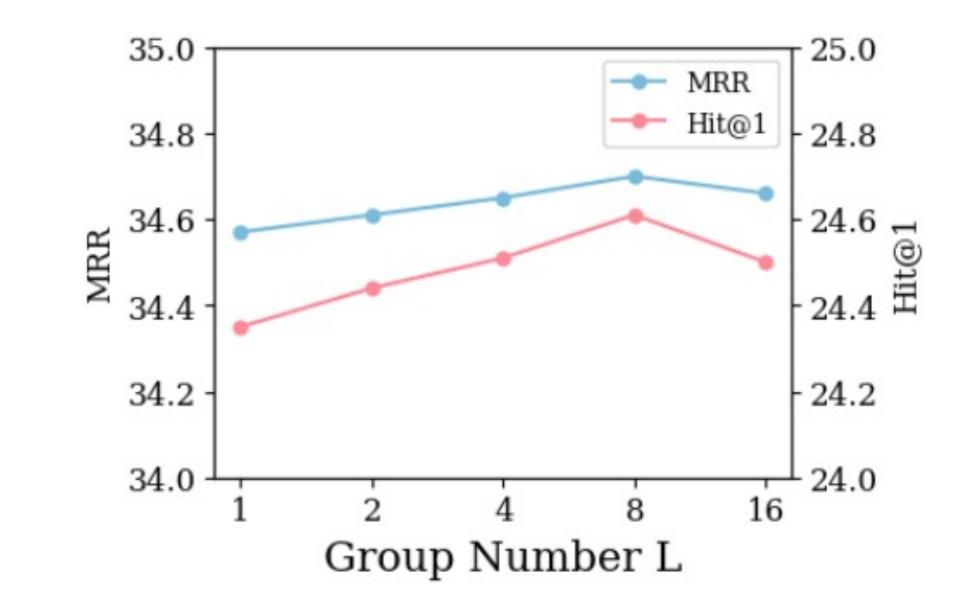
Imbalanced Link Prediction Results on DB15K



Further Exploration

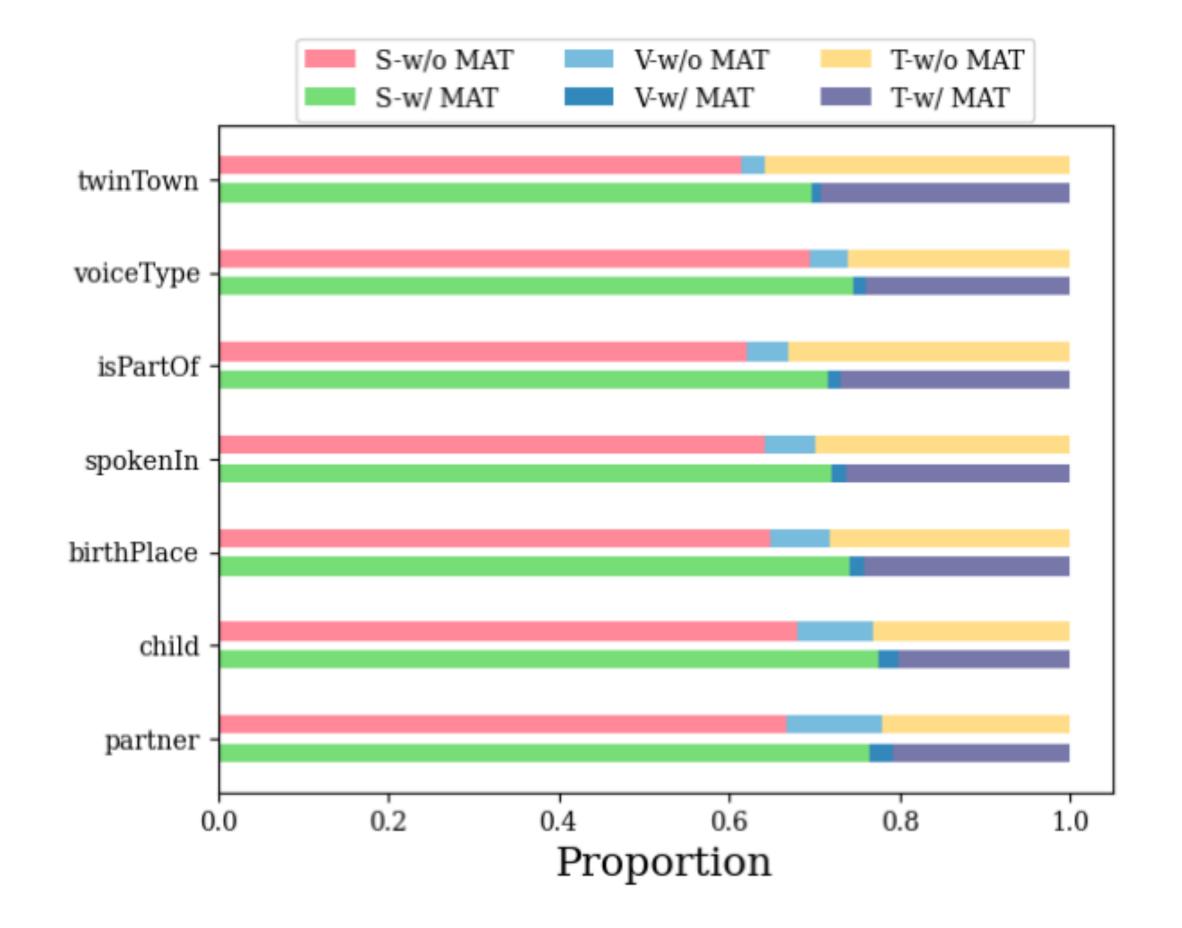
Ablation Study Results

5					
Model		MRR	Hit@1	Hit@3	Hit@10
Ad	aMF-MAT	35.14	5.14 25.30 41.11 52.9		52.92
AdaMF (w/o MAT)	S+V+T(Adaptive)	33.19	23.08	40.34	52.47
	S+V+T(Mean)	32.57	21.45	39.71	51.68
	S+V(w/o T)	32.34	21.84	38.90	50.76
	S+T(w/o V)	31.82	19.63	39.69	52.51
	V+T(w/o S)	31.01	18.45	39.38	52.27
MAT	w/o (h^*,r,t)	34.64	24.52	40.98	52.49
	w/o (h,r,t^*)	34.65	24.49	41.13	52.61
	w/o (h^*,r,t^*)	34.61	24.36	40.98	52.65



Further Exploration

Adaptive Weight Visualization



04. Conclusion

- Conclusion
- Our Future Work

Conclusion

- In this paper, we mainly discuss the problem of utilizing modal information in MMKGC and propose a novel MMKGC framework called AdaMF-MAT to address the limitations of the existing methods.
- Our method AdaMF-MAT employs adaptive modal fusion to utilize the multi-modal information diversely and augment the multi-modal embeddings through modality-adversarial training.
 Experiments demonstrate that AdaMF-MAT can outperform all the existing baseline methods and achieve SOTA results in MMKGC tasks.

Future Work

- [SIGIR 2024] Multi-modal Knowledge Graph Completion in the Wild
- [Preprint] MyGO: Discrete Modality Information as Fine-Grained Tokens for Multi-modal Knowledge Graph Completion
- [Preprint] The Power of Noise: Toward a Unified Multi-modal Knowledge Graph Representation Framework
- [Preprint] Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey

塘地

