Beyond Canonical Fine-tuning: Leveraging Hybrid Multi-Layer Pooled Representations of BERT for Automated Essay Scoring LREC-COLING 2024

Eujene Nikka Boquio, Prospero Naval, PhD

- evboquio@up.edu.ph, pcnaval@dcs.up.edu.ph
 - University of the Philippines Diliman

Automated Essay Scoring

- students may **vary**
- pragmatics and coherence or adherence to prompt, etc

aims to assign a **numeric score** to an essay written on a certain **topic** or **prompt**

based on its **overall quality** or different writing criteria

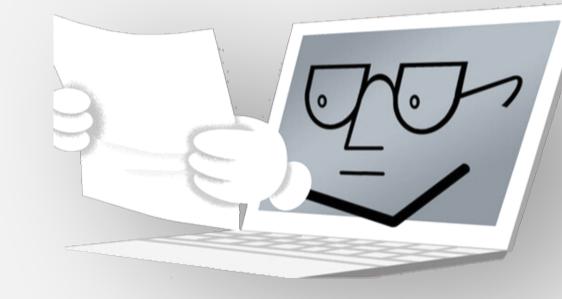
Challenges

lack of a set of well-defined standards or rules for evaluating essays

essay type and prompt, scoring scale, rubrics, and grade-level of

essays consist of **long sequences** of words and sentences

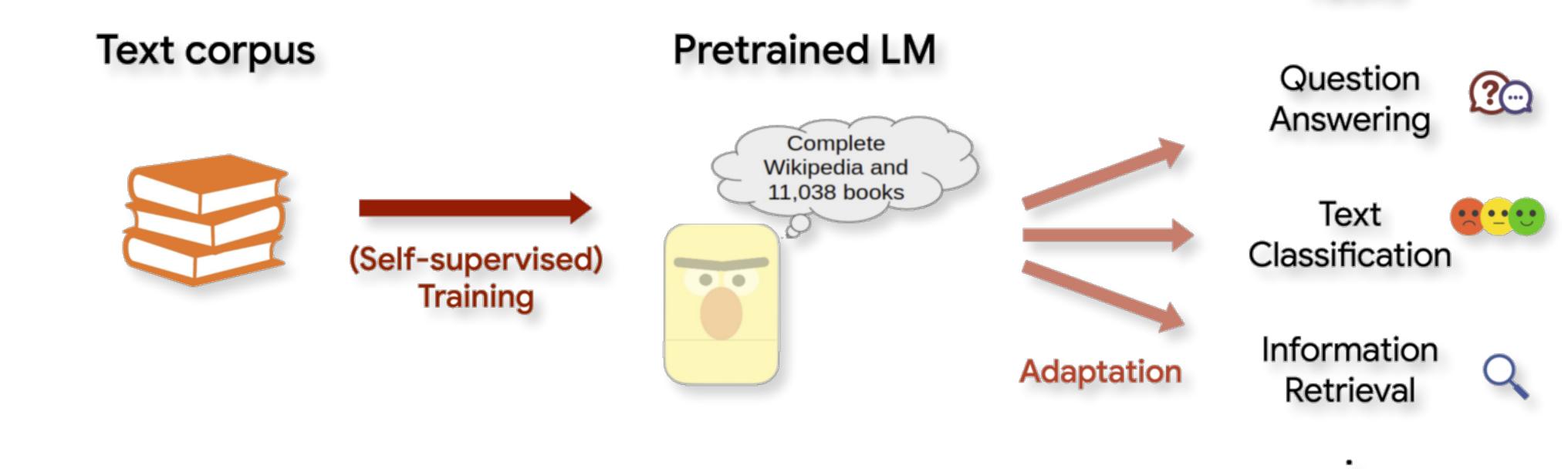
need to consider **higher level features**: semantics, discourse,



Pre-trained Language Models

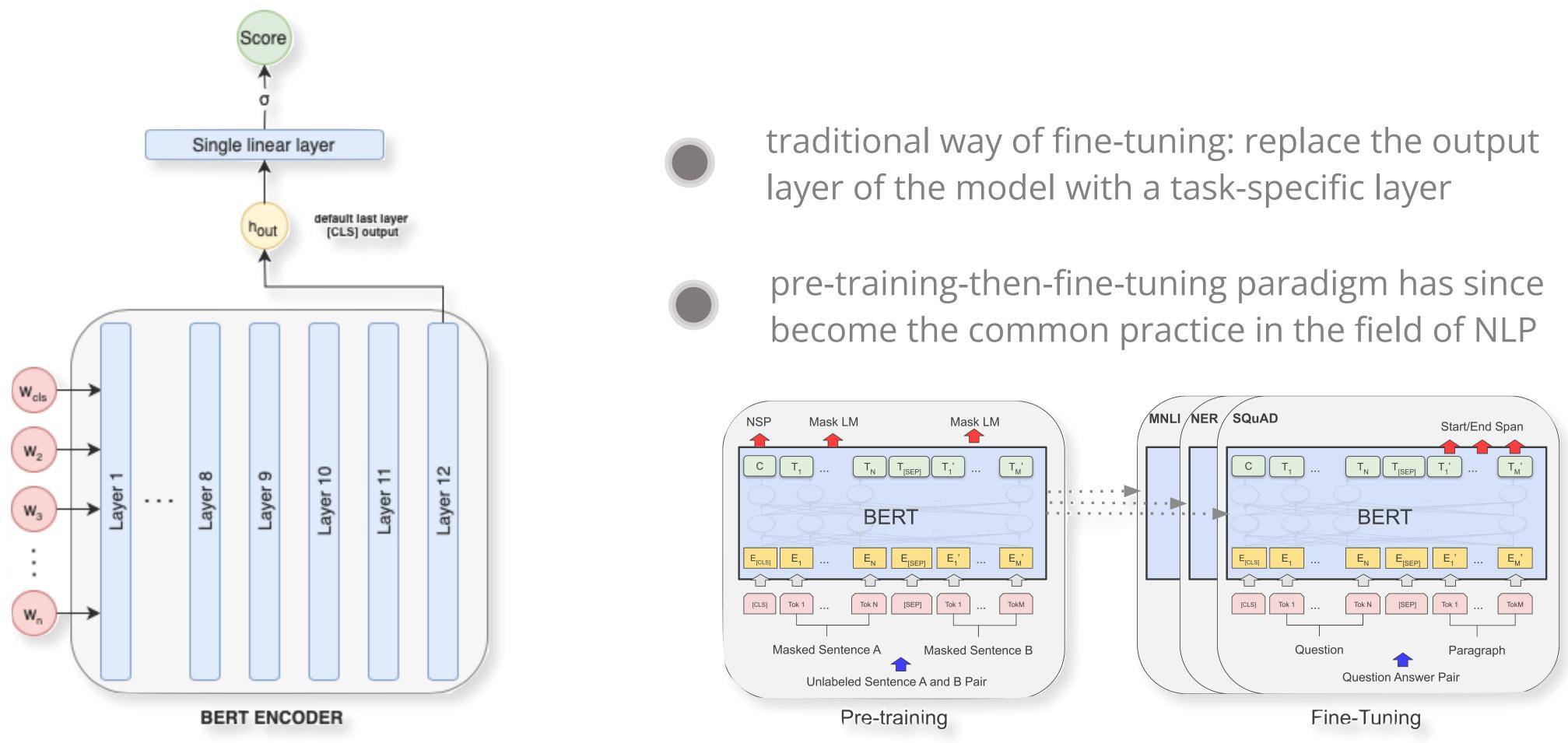
Transfer learning allows a **pr** -> eliminates need to build ar

PLMs **pre-train** on a large cor downstream tasks



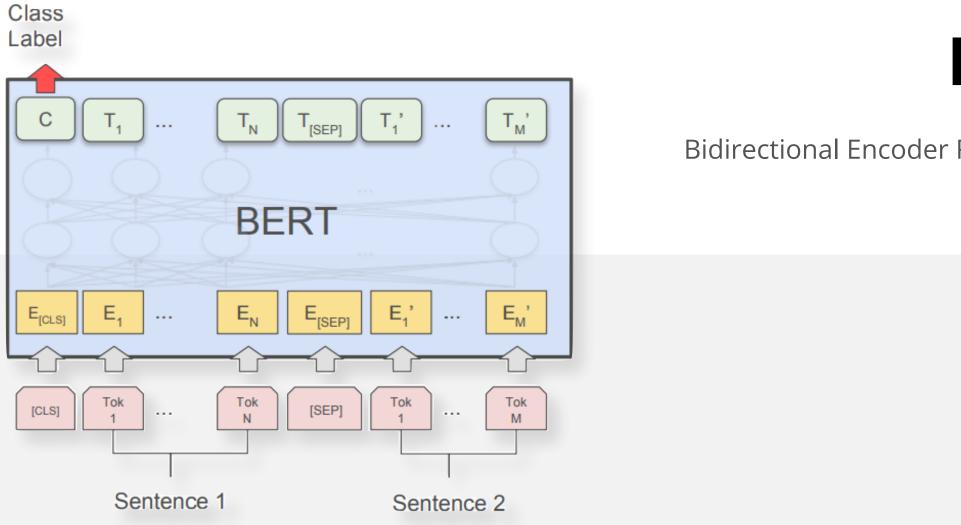
- Transfer learning allows a pre-trained model to be adapted
- -> eliminates need to build and train new models from scratch
- PLMs **pre-train** on a large corpus of data and use **transfer learning** for

Tasks



Fine-tuning PLMs

Devlin et al., 2018



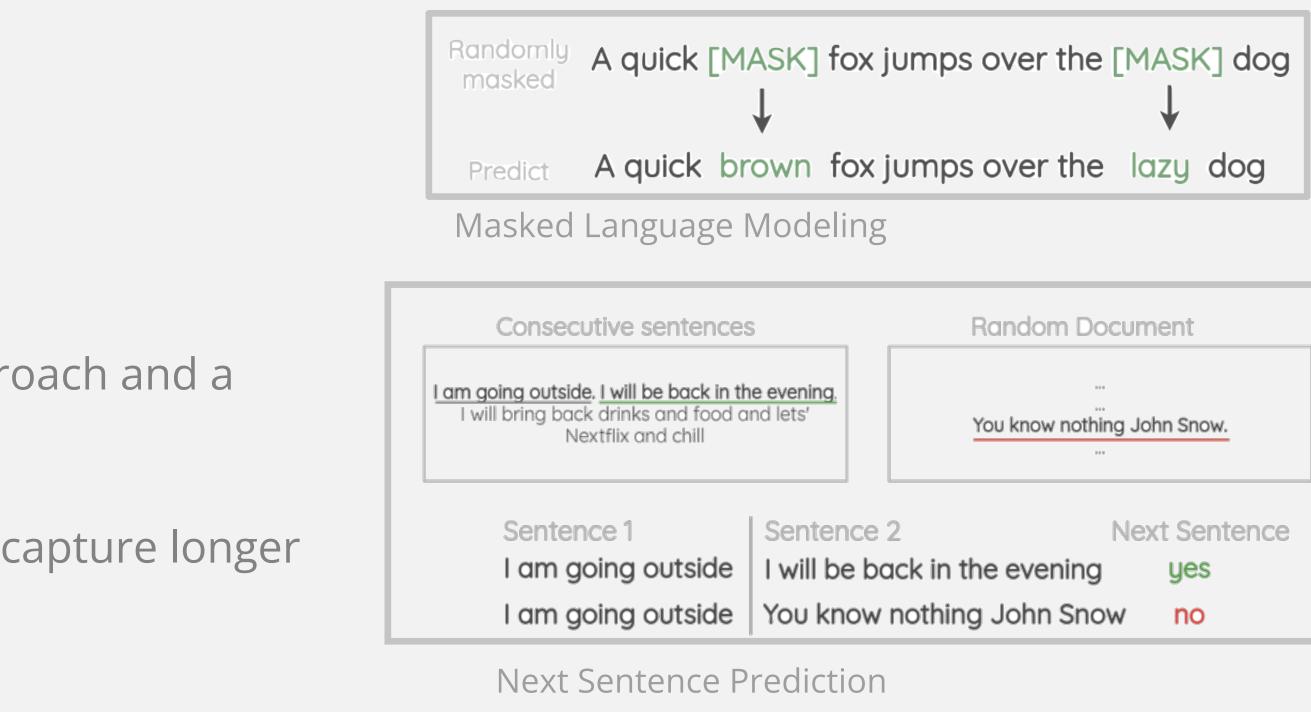
use of a novel language modeling approach and a multi-layer **bidirectional Transformer**

self-attention mechanism allows it to capture longer time dependencies and **context**

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding

BERT

Bidirectional Encoder Representations from Transformers



IOW.
entence s
)

Related Studies

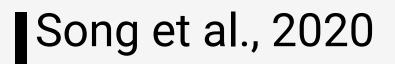
Current AES methods that fine-tune BERT use the output of the final classification ([CLS]) token as essay representation (Rodriguez et al., 2019; Yang et al., 2020; Sun et al., 2022)

Devlin et al., 2018

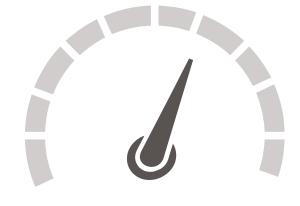
used various combinations of features from different layers for named entity recognition task

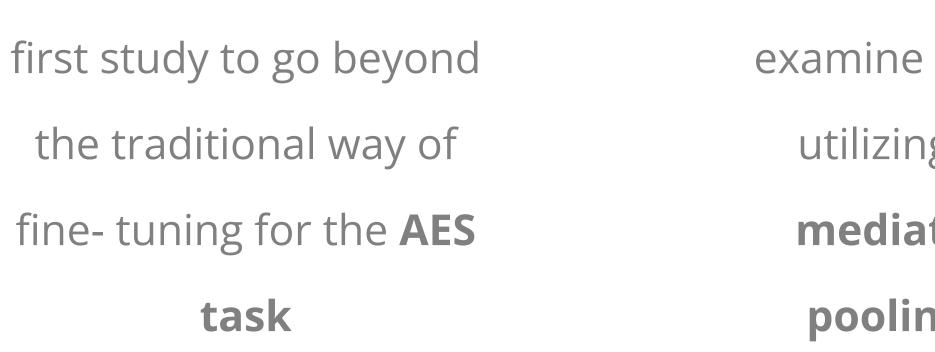
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding Youwei Song, Jiahai Wang, Zhiwei Liang, Zhiyue Liu, and Tao Jiang. 2020. Utilizing bert intermediate layers for aspect based sentiment analysis and natural language inference. Ganesh Jawahar, Beno¹t Sagot, and Djame[′] Seddah. 2019. What does bert learn about the structure of language? In ACL 2019-57th Annual Meeting of the Association for Computational Linguistics.

In BERT, the information captured specializes for the language modeling tasks as we approach its last layers (Hao et al., 2020; Peters et al., 2018; Liu et al., 2019).



used multi-layer representations of the [CLS] token integrated with LSTM and attention pooling for sentiment analysis and NLI tasks





Contributions

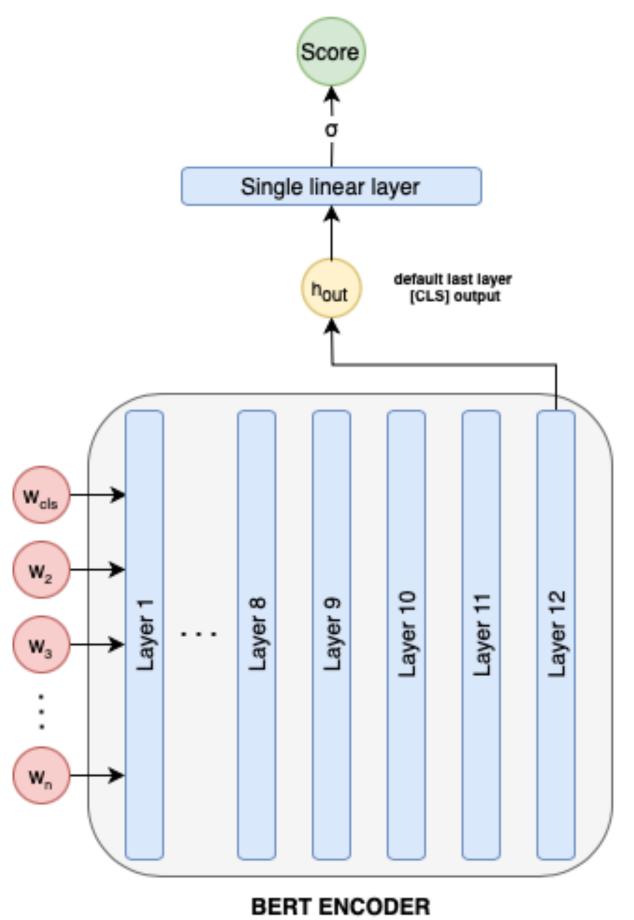
examine the potential of

utilizing **BERT inter-**

mediate layers and

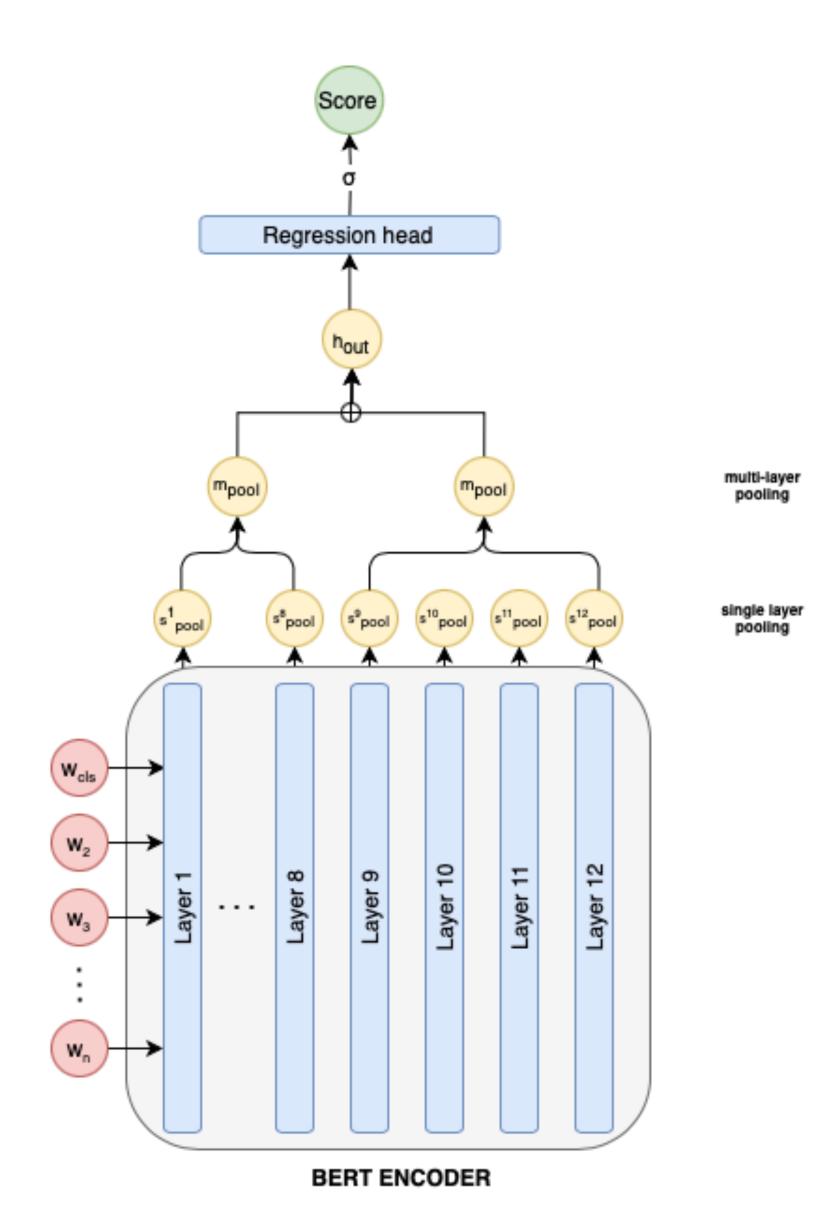
pooling strategies

improved results using **pooled** information from all BERT layers & simple architecture modification



(a) Traditional BERT finetuning paradigm

(b) Our proposed model methodology



Automated Student Assessment Prize (ASAP) dataset

- official dataset used in the ASAP competition in 2012
- 13,000 English essays
- written by students in Grades 7 to 10
- across 8 different prompts, 3 essay types, and different score ranges

Dataset

Set	Essay	#	Ave	Score	Token
Sei	Туре	Essay	Len	Range	Len
1	Argumentative	1785	350	2 - 12	649
2	Argumentative	1800	350	1 - 6	704
3	Source-dependent	1726	150	0 - 3	219
4	Source-dependent	1772	150	0 - 3	203
5	Source-dependent	1805	150	0 - 4	258
6	Source-dependent	1800	150	0 - 4	289
7	Narrative	1569	300	0 - 30	371
8	Narrative	723	650	0 - 60	1077

Preprocessing

- convert all characters to **lowercase**
- remove special characters
- perform tokenization using WordPiece tokenizer
- truncate essays longer than 510 tokens
- **pad** shorter essays

Model Implementation

- bert-base-uncased model (12 layers: hidden size of 768 and 12 attention heads)
- implementation of **Huggingface** transformers library

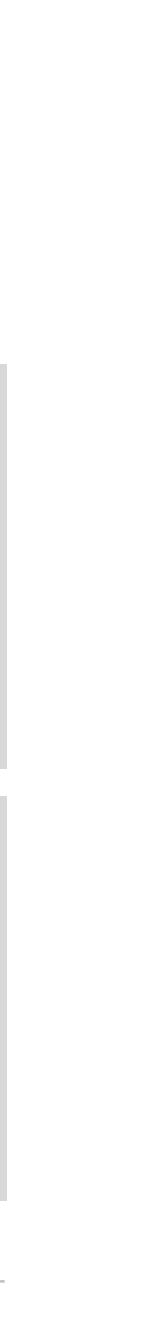
AES task

- treat as a **regression** problem
- use **sigmoid activation** function
- use **Mean Square Error** as loss function
- **normalize** reference scores and **scale back** predicted scores to original range

Training and Evaluation

- train/validation/test split of 60/20/20
- quadratic weighted kappa (QWK) as evaluation metric
- train models **100 epochs**
- choose model w/ **best validation QWK**
- implemented using **PyTorch**

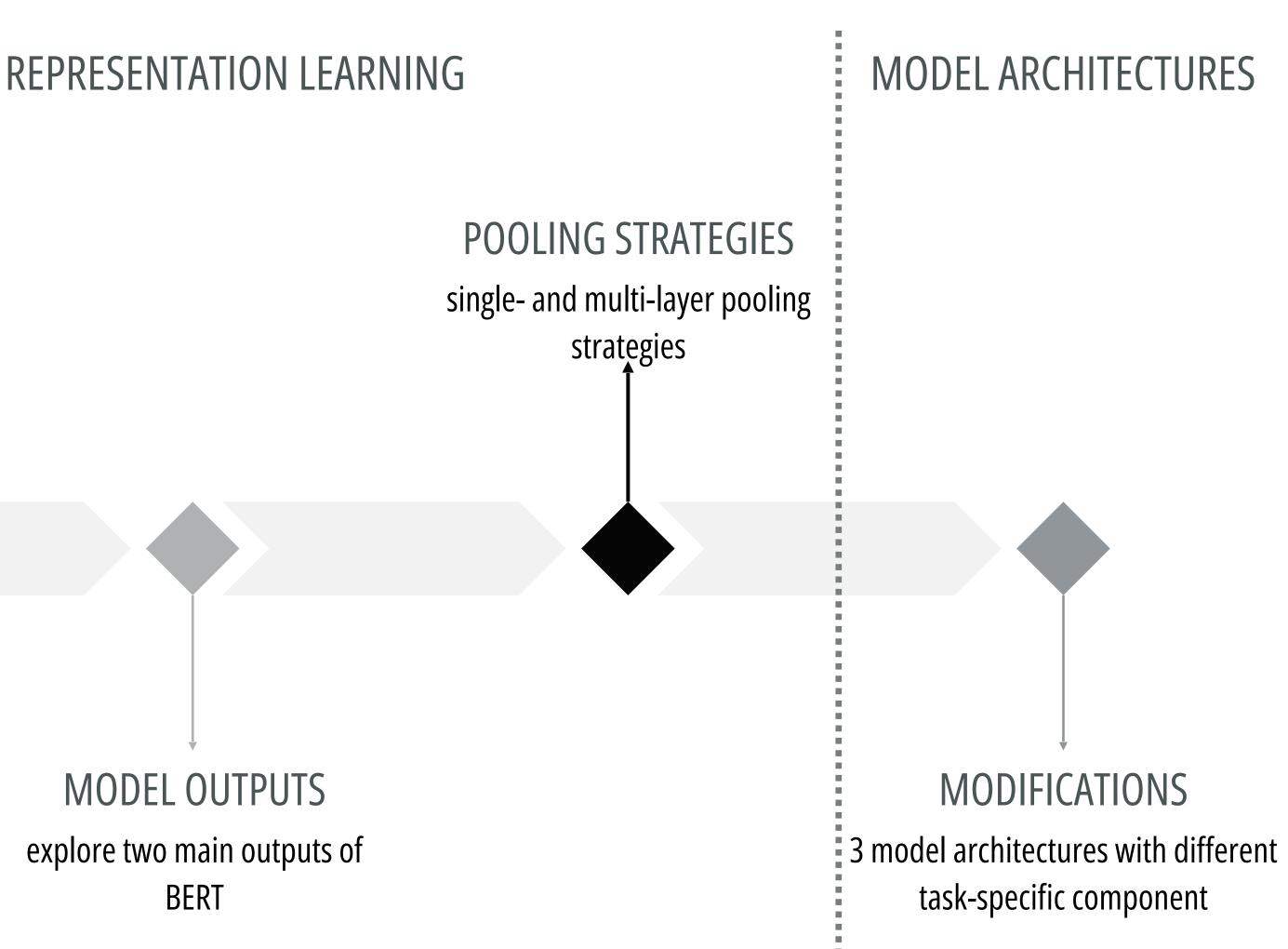
EXPERIMENTAL SETUP



INITIAL EXPERIMENTS Using default lhs-cls outputs & single output layer

MAIN EXPERIMENTS

Hyperparameters	Values tested
Optimizer	SGD, Adam, AdamW
Scheduler	None, Linear decay, Cosine, Polynomial decay
Learning rate	SGD: 0.001, 0.01 , 0.03 , 0.05, 0.08, 0.1,
	Adam/AdamW: $3e^-6$, e^-5 , $5e^-5$, $1e^-4$
Dropout rate	0, 0.1, 0.3 , 0.5



Representation Learning

BERT's default output representation:

Given a sequence of *n* tokens $\{w_1, \ldots, w_n\}$, which include special tokens and the words in an input essay, BERT encodes the sequence into the contextualized representation $R \in \mathbb{R}^{n \times d}$ given by:

 $R = BERT(\{w_1, \dots, w_n\})$

where *R* is the output of the last layer of the BERT encoder and *d* is the hidden size. *R* corresponds to the first token ([CLS]) of the last hidden state.

last hidden state (lhs)

sequence of hidden states at the last layer of the model

Notations:

- lhs last layer
- 2lhs 2nd to the last layer
- 3lhs 3rd to the last layer
- 4lhs 4th to the last layer

2 MAIN BERT OUTPUTS

hidden state (hs)

aggregation of hidden states of multiple layers and sequences

Notations:

- gl4 last 4 layers (get last 4)
- gf8 first 8 layers (get first 8)
- ahs all 12 layers (all hidden states)

Methodology **Single Layer Pooling Strategies**

CLS embedding (cls)

obtained by taking h_{cls}^{K} of a layer *K*. e.g. the CLS embedding of the thirdto-the last layer (3lhs-cls) is h_{cls}^{10}

Mean pooling (mean)

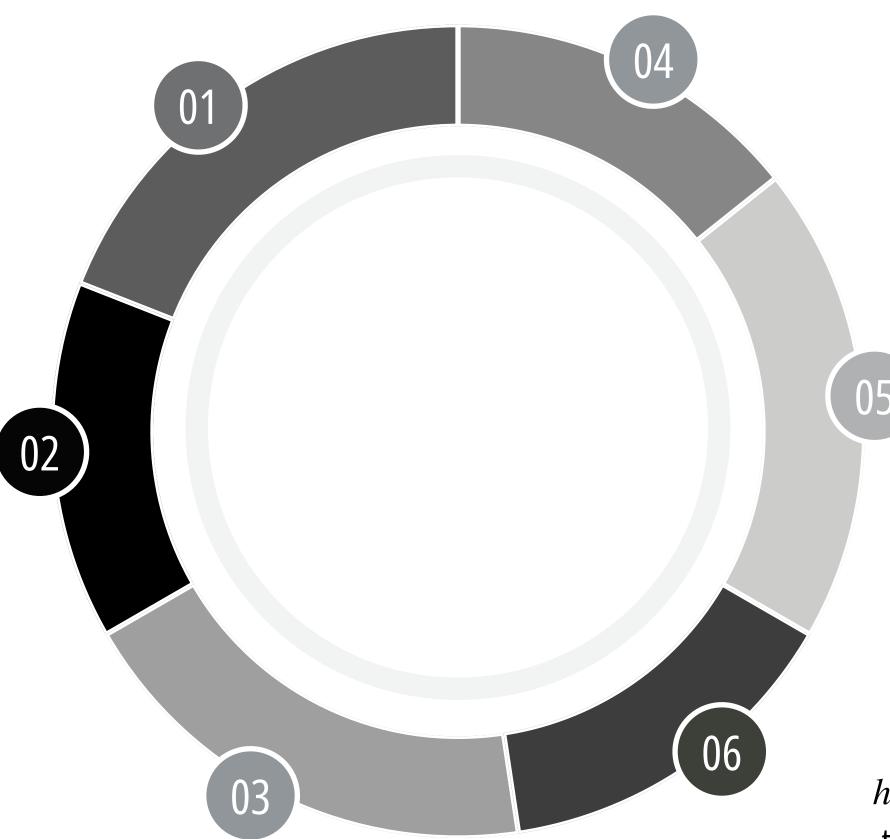
averages the hidden states of all *n* token embeddings in a layer. We ignore the [PAD] token by utilizing the attention masks.

 $\mathbf{h}_{mean}^{K} = 1n \sum_{i=1}^{n} H_{i}^{K}$

Max pooling (max)

takes the maximum across *n* token embeddings. Attention masks are also used.

$$\mathbf{h}_{max}^{K} = \max_{i=1,\dots,n} H_{i}^{K}$$



Mechanical systems and signal processing, 151:107398.

Mean-max pooling (mm)

finds both mean and max pooling embeddings and concatenates them

 $\mathbf{h}_{mm}^{K} = h_{mean}^{K} \parallel h_{max}^{K}$

Attention pooling (att)

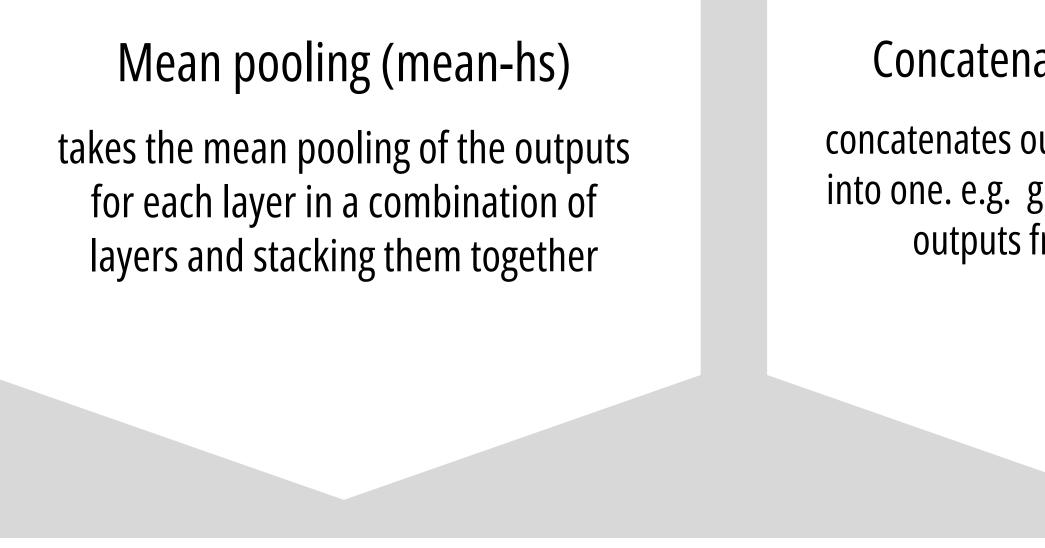
uses dot-product attention operation on all token embeddings for a layer *K*

$$\begin{aligned} \mathbf{a}_{i} &= \tanh\left(W_{a}^{K} \cdot h_{i}^{K} + b_{a}\right) \\ \alpha_{i} &= e^{w_{\alpha} \cdot a_{j}} \sum e^{w_{\alpha} \cdot a_{j}} \\ \mathbf{h}_{att}^{K} &= \sum \alpha_{i} \overset{K}{_{i}} \end{aligned}$$

where W_a is the weight matrix, w_{α} is the weight vector, b_a is the bias vector, and a_i and α_i are the attention vector and attention weight for the i^{th} token respectively.

Conv1d pooling (conv)

 h_{conv}^{K} uses 1D convolution layers (Kiranyaz et al., 2021) that slide across all *n* tokens. We use a kernel size of 2 tokens and a padding size of 1.



By default, pooling strategies for hs outputs are applied on the CLS embeddings from a set of layers **S**

(e.g. gl4-concat uses concatenates the CLS embeddings of the last 4 layers, or S = {9, 10, 11, 12}).

Multi-layer Pooling Strategies

We denote the hidden states of the CLS token of BERT with L layers as $h_{CLS} = h_{CLS}^1, h_{CLS}^2, \dots, h_{CLS}^L$.

Concatenate pooling (concat)

concatenates outputs from multiple layers into one. e.g. gl4-concat concatenates the outputs from the last 4 layers.

Weighted layer pooling (wl)

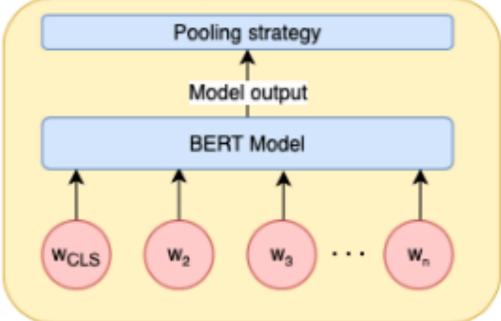
takes the weighted mean of the token embeddings of layers in a set of layers

When using single-layer pooling other than CLS embedding, we add the pooling method after the notation

(e.g. gl4-att-concat concatenates output obtained from attention pooling from each of the last 4 layers)

bert-finetune bert-double Score Score Dropout layer Dropout layer Drop Linear layer Line (out_features =1) (out_fe Linear layer ReLU (out_features =1) Linear layer LST (out_features =100) MODEL BASE MODEL BASE MOD

MODEL BASE

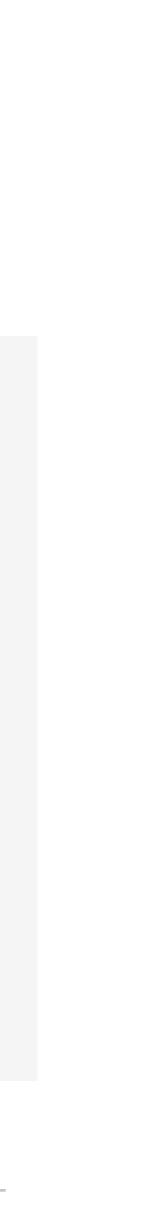


Model Architectures

rt-Istm
core
Λ σ
out layer
ar layer atures =1)
1
M layer
1
EL BASE

Default Configuration

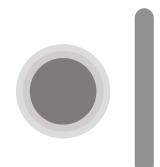
- batch size of 32
- dropout rates of 0, 0.1, and 0.3
- linear scheduler w/ 0 warmup steps
- gradient clipping w/ max norm of 1.0
- initialize model parameters to the pre-trained values



Initial Experiments

MODEL	CONFIG	SET 1	SET 2	SET 3	SET 4	SET 5	SET 6	SET 7	SET 8	AVE
	AdamW lr=3e ⁻⁶	0.8480	0.6361	0.6774	0.8085	0.8024	0.8179	0.8022	0.7678	0.7700
	AdamW lr=5e ⁻⁵	0.8216	0.6579	0.6888	0.8135	0.7957	0.8228	0.8114	0.7007	0.7641
bert-finetune	AdamW lr=1e ⁻⁴	0.8279	0.6568	0.6607	0.8232	0.8236	0.8191	0.8141	0.6793	0.7631
	SGD lr=0.01	0.8351	0.6454	0.6977	0.8298	0.7999	0.8235	0.7991	0.7754	0.7757
	SGD lr=0.03	0.8152	0.6000	0.6913	0.8298	0.8193	0.8309	0.8068	0.7386	0.7665
	AdamW lr=3e ⁻⁶	0.8186	0.6262	0.6844	0.7925	0.7680	0.8054	0.7989	0.7501	0.7555
	AdamW lr=5e ⁻⁵	0.8106	0.6809	0.6744	0.8134	0.8173	0.8208	0.8131	0.7097	0.7675
bert-double	AdamW lr=1e ⁻⁴	0.8130	0.6583	0.7075	0.8127	0.8155	0.8233	0.7915	0.6887	0.7638
	SGD lr=0.01	0.8277	0.6400	0.7096	0.7975	0.7924	0.8134	0.8107	0.7591	0.7688
	SGD lr=0.03	0.8166	0.6608	0.7039	0.8168	0.8095	0.8353	0.8193	0.7689	0.7789
	AdamW lr=3e ⁻⁶	0.8207	0.6051	0.7031	0.7809	0.7824	0.8227	0.7985	0.7343	0.7560
	AdamW lr=5e ⁻⁵	0.8022	0.6681	0.6811	0.8239	0.7949	0.8436	0.8044	0.7284	0.7683
bert-lstm	AdamW lr=1e ⁻⁴	0.8233	0.6303	0.7105	0.8190	0.8129	0.8268	0.7950	0.7429	0.7701
	SGD lr=0.01	0.8259	0.6524	0.6947	0.8133	0.8078	0.8108	0.8066	0.7505	0.7702
	SGD lr=0.03	0.8202	0.6803	0.7070	0.8271	0.8029	0.8269	0.8124	0.7468	0.7780

QWK scores for different model architectures and hyperparameter configuration on ASAP dataset. The default lhs-cls output is used for all models.



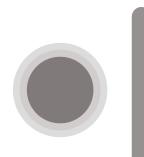
SGD optimizer has better scoring performance on all essay prompts using all 3 model architectures

Main Results

MODEL	POOL	lhs	2lhs	3lhs	4lhs	AVE
	cls	0.8152	0.8084	0.8243	0.8234	0.8178
bert-finetune	att	0.8398	0.8155	0.8377	0.8071	0.8250
	mean	0.8205	0.8358	0.8261	0.8154	0.8245
	max	0.8333	0.8111	0.7673	0.8163	0.8070
	mm	0.8240	0.8208	0.8177	0.7490	0.8029
	conv	0.8015	0.7856	0.7825	0.7906	0.7901
	cls	0.8202	0.8154	0.8027	0.8259	0.8160
	att	0.8231	0.8176	0.8123	0.8272	0.8201
bert-double	mean	0.8238	0.8157	0.8182	0.8239	0.8204
bert-uouble	max	0.8351	0.8358	0.8215	0.8274	0.8299
	mm	0.8206	0.8419	0.8376	0.8169	0.8293
	conv	0.8381	0.8380	0.8239	0.8263	0.8316
	cls	0.8202	0.7983	0.8186	0.8273	0.8161
	att	0.8183	0.8137	0.8302	0.8083	0.8176
bert-lstm	mean	0.8349	0.8263	0.8089	0.8280	0.8245
	max	0.8349	0.8444	0.8301	0.8169	0.8316
	mm	0.8446	0.8309	0.8302	0.8361	0.8354
	conv	0.8321	0.8103	0.8084	0.8299	0.8202

QWK scores using different pooling strategies on each of the last 4 layers. Best values for each model and layer are in bold.

for **bert-finetune**, the CLS output from only the last layer may not be the best essay representation



for **bert-double**, **all** other pooling methods **improved** over the cls embedding

for **bert-lstm**, **all** other pooling methods **improved** over the cls embedding

modified model architectures and other pooling methods improved over the **default** BERT fine-tuning

Main Results

all layers contain important essay information that can still help with the scoring performance

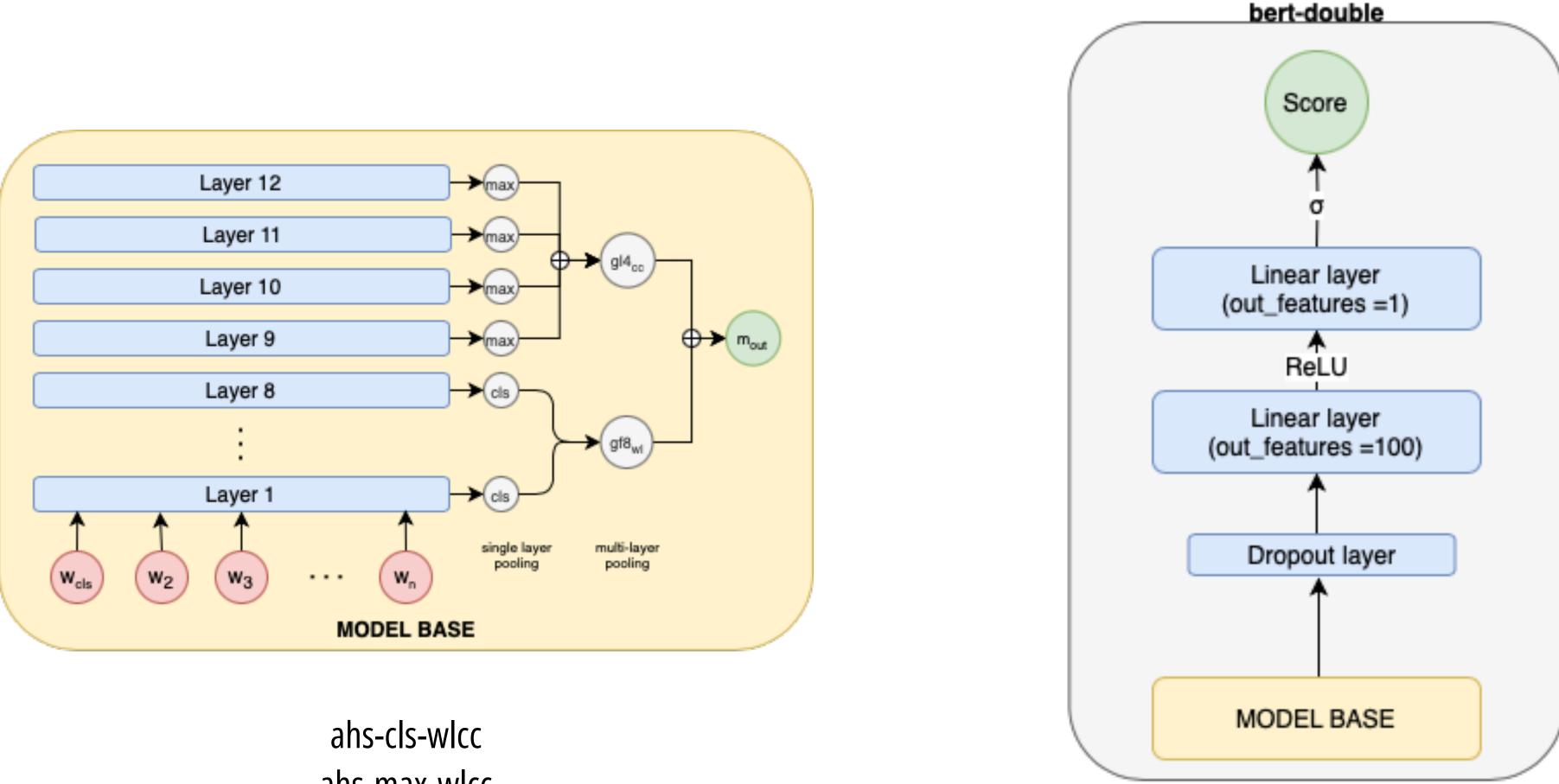
first layers can still contribute to obtaining relevant essay representations

observe **bert-double** to be the best at capturing relevant information from combinations of layers

observe the best QWK results using **gl4-cc** and **gf8-wl**

MODEL	POOL	gl4	gf8	ahs
	mean-hs	0.8118	0.8174	0.8127
bert-finetune	cc	0.8127	0.8323	0.8164
	wl	0.8207	0.8270	0.8361
	mean-hs	0.8288	0.8163	0.8311
bert-double	cc	0.8445	0.8281	0.8388
	wl	0.8297	0.8385	0.8253
	mean-hs	0.8265	0.8035	0.8063
bert-lstm	cc	0.8158	-	-
	wl	0.8190	0.8340	0.8257

QWK scores for different pooling strategies on different layer combinations. Best values for each model and layer combination are in bold.



ahs-max-wlcc

Main Results

Main Results

OUTPUT	SET 1	SET 2	SET 3	SET 4	SET 5	SET 6	SET 7	SET 8	AVE
lhs-cls	0.8277	0.6400	0.7096	0.7975	0.7924	0.8134	0.8107	0.7591	0.7688
gl4-cc	0.8445	0.6488	0.7054	0.8099	0.8053	0.8096	0.8088	0.7567	0.7736
gf8-wl	0.8385	0.6779	0.7040	0.8030	0.8009	0.8143	0.8194	0.7069	0.7706
ahs-cls-wlcc	0.8293	0.6737	0.7036	0.8316	0.7936	0.8309	0.8040	0.7638	0.7822
ahs-att-wlcc	0.8351	0.6746	0.7168	0.8131	0.8092	0.8059	0.8089	0.7865	0.7813
ahs-mean-wlcc	0.8392	0.6783	0.6958	0.8186	0.8041	0.8380	0.8081	0.7549	0.7796
ahs-max-wlcc	0.8338	0.6884	0.7080	0.8214	0.8320	0.8277	0.8172	0.7714	0.7875
ahs-mm-wlcc	0.8406	0.6618	0.7318	0.8106	0.8098	0.8240	0.8120	0.7658	0.7820
ahs-conv-wlcc	0.8168	0.7288	0.6945	0.8097	0.8166	0.8024	0.8100	0.7545	0.7791

QWK scores of our model using different outputs on ASAP dataset. The best values for each essay set are shown in bold.

best average QWK score is **ahs-maxwlcc**, followed by **ahs-cls-wlcc**

all other model outputs improved over default lhs-cls output

using **all 12 layers** performs **better** than only using a subset of layers

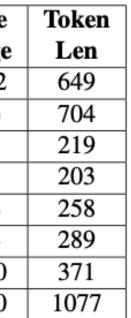
all the models that use **hybrid pooling** have an improvement in average QWK scores

Comparisons with Baselines

MODEL	SET 1	SET 2	SET 3	SET 4	SET 5	SET 6	SET 7	SET 8	AVE
EASE (SVR)	0.781	0.621	0.63	0.749	0.782	0.771	0.727	0.534	0.699
EASE (BLRR)	0.761	0.606	0.621	0.742	0.784	0.775	0.73	0.617	0.705
LSTM	0.775	0.687	0.683	0.795	0.818	0.813	0.805	0.594	0.746
LSTM + CNN	0.821	0.688	0.694	0.805	0.807	0.819	0.808	0.644	0.76
BERT	0.792	0.679	0.715	0.8	0.805	0.805	0.785	0.595	0.748
XLNet	0.776	0.68	0.692	0.806	0.783	0.793	0.786	0.628	0.743
BERT Ensemble	0.802	0.672	0.708	0.815	0.806	0.814	0.804	0.597	0.752
XLNet Ensemble	0.804	0.685	0.7009	0.795	0.799	0.805	0.8	0.597	0.748
BERT + XLNet Ensemble	0.807	0.696	0.703	0.819	0.808	0.815	0.806	0.604	0.757
HISK and -SVR	0.836	0.724	0.677	0.821	0.83	0.828	0.801	0.726	0.78
BOSWE and -SVR	0.788	0.689	0.667	0.809	0.824	0.824	0.766	0.679	0.756
HISK+BOSWE and -SVR	0.845	0.729	0.684	0.829	0.833	0.83	0.804	0.729	0.784
Parameter-Efficient Transformer	0.743	0.674	0.718	0.884	0.834	0.842	0.819	0.744	0.785
HA-LSTM+SST+DAT	0.836	0.73	0.732	0.822	0.835	0.832	0.821	0.718	0.79
BERT+SST+DAT	0.824	0.699	0.726	0.859	0.822	0.828	0.84	0.726	0.791
$R^2 BERT$	0.817	0.719	0.698	0.845	0.841	0.847	0.839	0.744	0.794
BERT-ahs-cls-wlcc (ours)	0.8293	0.6737	0.7036	0.8316	0.7936	0.8309	0.8040	0.7638	0.7822
BERT-ahs-wm-wlcc (ours)	0.8338	0.6884	0.7080	0.8214	0.8320	0.8277	0.8172	0.7714	0.7875*

QWK scores of our chosen models and other baseline models on the ASAP dataset. Best values for each essay set are in bold. Models that outperform ours use self-supervised tasks, multi-loss learning functions, or more intricate architectures.

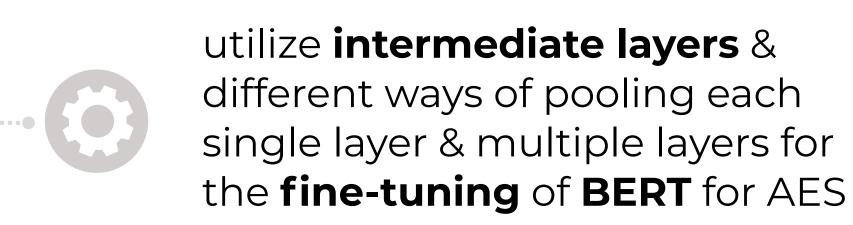
Sat	Essay	#	Ave	Score
Set	Туре	Essay	Len	Rang
1	Argumentative	1785	350	2 - 12
2	Argumentative	1800	350	1 - 6
3	Source-dependent	1726	150	0 - 3
4	Source-dependent	1772	150	0 - 3
5	Source-dependent	1805	150	0 - 4
6	Source-dependent	1800	150	0 - 4
7	Narrative	1569	300	0 - 30
8	Narrative	723	650	0 - 60



Summary

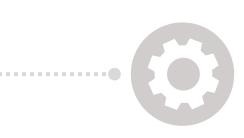
Our model

- simple model modification using a hybrid pooled multi-layer BERT representation



found that we can **improve** essay scoring performance by using **all** or even **several BERT layers**

improved results with **simple** architectural modification of the task-specific layer with **ReLU**



performed **hyperparameter tuning** and found that **SGD** optimizer generalizes **better** than Adam for AES using BERT

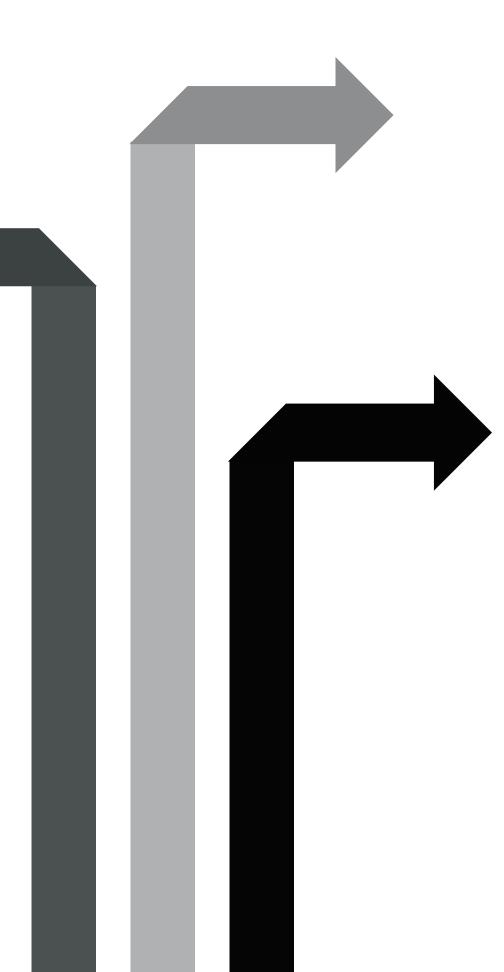
Future Work

ERROR ANALYSIS

to detect future improvements

MORE COMPLICATED TECHNIQUES

more complicated architectures, multitask learning with other loss functions or NLP tasks, and various optimization strategies



OTHER LONG-TEXT TASKS

evaluate across various datasets and other long-text tasks

DIFFERENT AES SETTINGS

evaluate on trait-specific scoring and cross- prompt settings

Thank you!

Contact Nikka Boquio evboquio@up.edu.ph

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding Ganesh Jawahar, Beno¹t Sagot, and Djame² Seddah. 2019. What does bert learn about the structure of language? In ACL 2019-57th Annual Meeting of the

Association for Computational Linguistics.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2020. In-vestigating learning dynamics of bert fine-tuning. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Lin-guistics and the 10th International Joint Conference on Natural Language Processing, pages 87–92.

Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith. 2019. Lin-guistic knowledge and transferability of contextual representations. arXiv preprint arXiv:1903.08855.

Matthew E Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. 2018. Dissecting contextual word embeddings: Architecture and representation. arXiv preprint arXiv:1808.08949.

Pedro Uria Rodriguez, Amir Jafari, and Christopher M Ormerod. 2019. Language models and automated essay scoring. arXiv:1909.09482.

Youwei Song, Jiahai Wang, Zhiwei Liang, Zhiyue Liu, and Tao Jiang. 2020. Utilizing bert intermediate layers for aspect based sentiment analysis and natural language inference.

Jingbo Sun, Tianbao Song, Jihua Song, and Weim- ing Peng. 2022. Improving automated essay scor- ing by prompt prediction and matching. Entropy, 24(9):1206. Junjie Yang and Hai Zhao. 2019. Deepening hid- den representations from pre-trained language mod- els for natural language understanding. ArXiv abs/ 1911.01940.

Baseline Models

EASE (Phandi et al., 2015)

open source system that uses Support Vector Regression (SVR) and Bayesian Linear Ridge Regression (BLRR)

LSTM-based deep neural networks (Taghipour and Ng, 2016) vanilla LSTM network and the LSTM + CNN network that combines CNN and LSTM ensembles over 10 runs

Hybrid models (Cozma et al., 2018) HISK and v-SVR, BOSWE and v-SVR, and HISK+BOSWE and v-SVR are reported.

Baseline Models

Simpler transformer-based models (Rodriguez et al., 2019) use BERT and XLNet (Yang et al., 2019) models, as well as ensembles for BERT, XLNet, and their combination

Self-supervised methods (Cao et al., 2020)

use two self-supervised tasks and a domain adversarial training technique. use hierarchical LSTM model and BERT as their base encoders, which are HA- LSTM+SST+DAT and BERT+SST+DAT respectively.

Parameter-Efficient Transformer (Sethi and Singh, 2022)

use transformer-based pre-trained language model with adapter models to reduce number of trainable parameters

R²BERT (Yang et al., 2020)

employs a multi-loss function that combines regression and ranking to fine-tune BERT model