

Department of Computer Science and Technology Tsinghua University

Fine-Grained Legal Argument-Pair Extraction via Coarse-Grained Pre-training

Chaojun Xiao, Yutao Sun, Yuan Yao, Xu Han, Wenbin Zhang Zhiyuan Liu, Maosong Sun

Tsinghua University

Background

- Legal Argument–Pair Extraction (LAE)
 - Identify the interactive arguments with the same topic from the statements of the plaintiff and the defendant
- Highlight the key factual disputes for further investigation

Background

- Existing methods formalize argument-pair extraction as a **supervised** sentence pair classification problem
- Rely heavily on substantial human-annotated data
 - Time-consuming and labor-intensive

 Goal: Designing an argument-oriented pre-training framework to utilize large-scale unlabeled complaint-defense pairs

- Motivated by two observation:
- (1) For most complaint arguments, there typically exists at least one corresponding defense argument that addresses them
- (2) Different complaint arguments are usually addressed by **different** defense arguments

• Argument-pair matching score: we employ BERT as the encoder

• Complaint-defense matching objective: we employ a contrastive learning

strategy

 Matching divergence objective: we maximum the JS divergence between the matching distribution of different complaint arguments

Experiments

- Dataset Construction: two-step annotation
 - Annotators: in a law-related profession or pursuing a law degree
 - Step 1: each case is required to be annotated twice independently
 - Step 2: an experienced annotator to give the final results for cases with different annotations in the first step
- Quality evaluation
 - 95.26% precision; 91.70% recall

Dataset	pre-train	train	valid	test			
	Lend	ing					
# Case	20k	1.2k	400	400			
# Argument	194k	11.7k	3.9k	3.9k			
# Arg-Pair	-	11.9k	4.4k	4.8k			
Contract							
# Case	20k	1.2k	400	400			
# Argument	201k	12.4k	4.2k	4.1k 🛛			
# Arg-Pair	-	11.3k	4.5k	4.8k			

Experiments

 Our method can achieve superior performance for both unsupervised and supervised setting

	Len	ding	Contract							
Model	valid	test	valid	test						
Unsupervised Setting										
AvgEmb	36.7	36.5	43.1	43.3						
IS-BERT	40.9	41.0	51.8	52.6						
SimCSE	42.9	41.7	51.8	51.9						
Ours	48.4	46.4	53.4	54.6						
Supervised Setting										
SBERT	54.6	54.0	60.6	59.8						
SimCSE _{Sup}	57.5	58.0	61.2	61.1						
BERT-Pair	62.0	62.0	65.3	65.5						
DARL	58.4	57.6	65.8	65.2						
Ours _{Sup}	65.6	64.0	68.0	68.3						

 Both two training objectives contribute to the final superior performance

	Lending		Contract					
Model	valid	test	valid	test				
Unsupervised Setting								
Ours	48.4	46.4	53.4	54.6				
w/o divergence	48.1	45.4	52.1	52.4				
Supervised Setting								
Ours _{Sup}	65.6	64.0	68.0	68.3				
w/o divergence	65.3	63.6	67.8	67.5				
w/o pre-training	62.0	62.0	65.3	65.5				
w/ MLM	62.5	62.3	65.2	65.0				

Experiments

I

• Our method can reach superior accuracy with only half manually annotated data

Summary

- Legal argument-pair extraction can help legal professionals highlight the key factual disputes
- We design an argument-oriented pre-training framework for LAE
- Our proposed method can achieve superior performance for both unsupervised and supervised setting with limited human-annotated data

Department of Computer Science and Technology Tsinghua University

Thanks

Chaojun Xiao

