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| Background

- Legal Argument—Pair Extraction (LAE)

* |dentify the interactive arguments
with the same topic from the
statements of the plaintiff and the

defendant

« Highlight the key factual disputes for

further investigation
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yuan from him for running his company. [2] Cindy
provided a guaranty. [ 3] After the deadline of the
repayment, Bob didn’t repay the loan and pay the
interest as scheduled. [4] Alice demands that Bob
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| Background

« Existing methods formalize argument—pair extraction as a supervised

sentence pair classification problem

« Rely heavily on substantial human-annotated data

* Time—consuming and labor—intensive

« Goal: Designing an argument-oriented pre—training framework to utilize

large—scale unlabeled complaint—-defense pairs



| Methodology

« Motivated by two observation:

* (1) For most complaint arguments, there typically exists at least one

corresponding defense argument that addresses them

« (2) Different complaint arguments are usually addressed by different

defense arguments



| Methodology

« Argument—pair matching score: we employ BERT as the encoder
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| Methodology

« Complaint—-defense matching objective: we employ a contrastive learning

strategy
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| Methodology

« Matching divergence objective: we maximum the JS divergence between the

matching distribution of different complaint arguments
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| Experiments

« Dataset Construction: two—step annotation
« Annotators: in a law-related profession or pursuing a law degree
« Step 1: each case is required to be annotated twice independently

« Step 2: an experienced annotator to give the final results for cases with

different annotations in the first step

Dataset pre-train  train valid test

Lending

* Qua“ty evaluation # Case 20k 1.2k 400 400
# Argument 194k 11.7k 3.9k 3.9k
. # Arg-Pai ~ 119k 4.4k 4.8k
 95.26% precision; 91.70% recall —
ontract
# Case 20k 1.2k 400 400

# Argument 201k 124k 4.2k 4.1k |
# Arg-Pair - 113k 45k 4.8k




| Experiments

« Our method can achieve superior

performance for both unsupervised

and supervised setting

Lending Contract
Model valid test valid test
Unsupervised Setting
AvgEmb 36.7 36.5 43.1 43.3
IS-BERT 409 410 518 526
SimCSE 429 417 518 519
Ours | 484 464 534 546
Supervised Setting
SBERT 546 540 606 59.8
SimCSEsg, 575 580 612 611
BERT-Pair 62.0 62.0 653 655
DARL 584 576 658 652
Oursgyp | 656 64.0 68.0 683

« Both two training objectives

contribute to the final superior

performance
Lending Contract
Model valid test valid test
Unsupervised Setting
Ours 484 464 534 546
w/o divergence | 48.1 454 521 524
Supervised Setting
Oursg,p 65.6 64.0 68.0 68.3

w/o divergence | 65.3 63.6 67.8 67.5
w/o pre-training | 62.0 62.0 65.3 65.5
w/ MLM 62.5 62.3 652 65.0




| Experiments

« Our method can reach superior accuracy with only half manually

annotated data
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| Summary

* Legal argument—pair extraction can help legal professionals highlight the

key factual disputes
 We design an argument-oriented pre-training framework for LAE

* Our proposed method can achieve superior performance for both

unsupervised and supervised setting with limited human—-annotated data
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