

ESDM: Early Sensing Depression Model in Social Media Streams

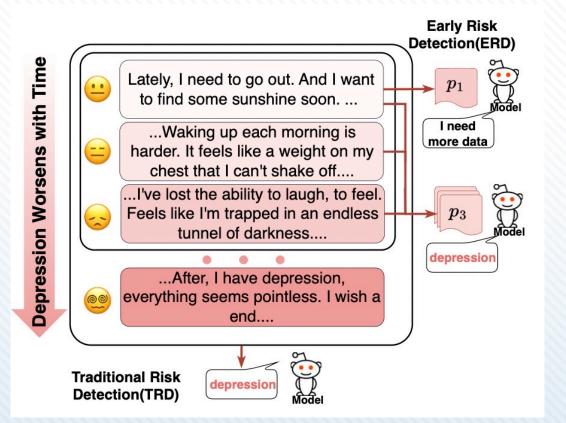
May 2, 2024

TASK AND MOTIVATION

METHOD

RESULT AND ANLYSIS

TASK AND MOTIVATION



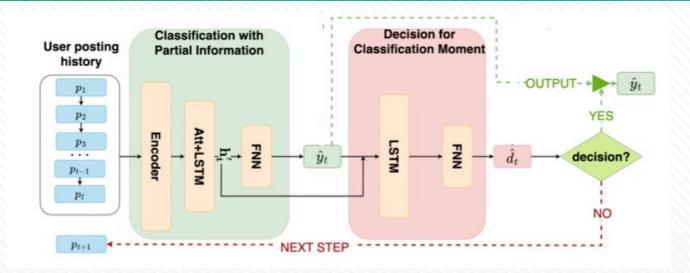
Traditional Depression Detection(TRD):

Typically, when discussing depression detection, the emphasis has been on whether our model can identify users exhibiting depressive symptom.

Early Depression Detection(ERD): In contrast, ERD is centered around the early identification of depressive users by our model.

- No Label on Each Step: Not every step taken by the user is labeled, which results in a mismatch in model requirements between training and testing phases.
- Trade-off: We must strike a balance between accuracy and time. Rapid detection may not always be feasible due to these constraints.

I CPI and DCM



CPI and DCM

- Drawing from predecessors' configurations to achieve a balance between two objectives
- CPI Module's Role: The CPI processes the current partial sequence to generate a prediction denoted as y^t.
- DCM Module's Role: The primary function of the DCM module is to decide whether the model should accept the decision based on the existing prediction y^t .
- \Box Once DCM accept y^t the model will stop and label the user

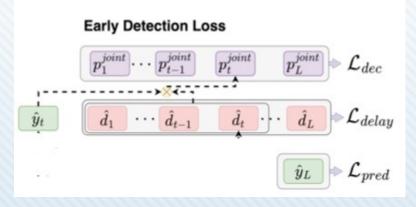
(I) Joint Training CPI and DCM

Early Detection Loss

 \Box *L*_{pred} : Serving as the foundation for the CPI module's ability to classify a user with depression.

 $\Box L_{dec}$: Enhancing the decision-making capabilities of DCM and the partial information classification abilities of CPI to ensure that ESDM can find earlier prediction and decide to output it.

 $\Box L_{delay}$: Encouraging DCM to make decisions as early as possible.



I Early Detection Loss

 $\Box L_{pred}$: Serving as the foundation for the CPI module's ability to classify a user with depression.

 \Box y_L is the last step. We ensure that the model can make accurate judgments after viewing the complete history

$$L_{ ext{pred}} = -(y \cdot \log(\hat{y}_L) + (1-y) \cdot \log(1-\hat{y}_L))$$

I Early Detection Loss

L_{dec} : Enhancing the decision-making capabilities of DCM and the partial information classification abilities of CPI.

p_{joint}, which means the joint probability that the model decides to stop at point t and makes a depression prediction.

$$p_t^{ ext{joint}} = (\hat{d}_t \cdot \prod_{i=1}^{t-1} (1-\hat{d}_i)) \cdot \hat{y}_t$$

 \square p_{all} is the model predicts the user to be depressed and the sum of the probabilities of each point in history

$$p_{ ext{all}} = \sum_{t=1}^L p_t^{ ext{joint}}$$
 $L_{ ext{dec}} = -(y \cdot \log(p_{ ext{all}}) + (1-y) \cdot \log(p_{ ext{all}}))$

I Early Detection Loss

 $\Box L_{delay}$: Encouraging DCM to make decisions as early as possible

$$L_{ ext{delay}} = \sum_{t=1}^L rac{2t}{L \cdot (L+1)} \cdot (1-\hat{d}_t)$$

$$L_{ear} = L_{pred} + L_{dec} + \lambda \cdot L_{delay}$$

III RESULT AND ANLYSIS

(*B* Earliness Evaluation Metrics

$$erde_{o}(k) = \begin{cases} c_{f_{p}}, & \mathsf{FP} \\ c_{f_{n}}, & \mathsf{FN} \\ lc_{o}(k) \times c_{t_{p}} & \mathsf{TP} \\ 0, & \mathsf{TN} \\ \end{cases}$$
(15)
$$lc_{o}(k) = \frac{1}{1 + e^{(-k+o)}}$$
(16)

This metric penalizes models that fail to make correct judgments about depression patients within specified timeframes. LR: This approach uses TF-IDF features combined with a logistic regression classifier for prediction.

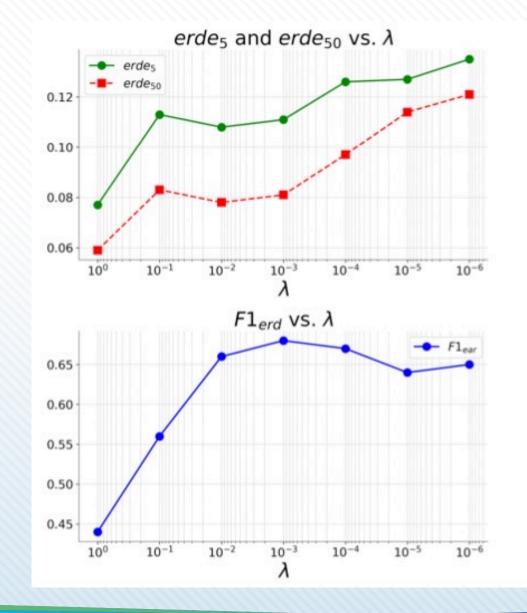
- Feature-Enriched: This approach integrates a suite of user-centric features, including LDA topic distributions linguistic attributes from LIWC, and metrics concerning emoji frequency.
- BiLSTM+Attention: Trained on a user's complete history, this approach combines the sequential data capture capability of BiLSTM with attention mechanisms.
- Risk Window: Trained on a user's complete history, this approach combines the sequential data capture capability of BiLSTM with attention mechanisms.
- SS3: SS3 is an incremental classifier designed specifically for early depression detection, using an incremen- tal learning paradigm.
- HAN-Psych: This method integrates psychological scales into content modeling and develops an early detection mechanism using dual-layered transformers based on a queuing algorithm.
- EARLIST: This technique, which incorporates reinforcement learning for early detec- tion, has received endorsement from domain experts

□Main Result

Model	$F1_{erd}(\uparrow)$	$erde_{50}(\downarrow)$	$erde_5(\downarrow)$	$F1_{trd}(\uparrow)$
LR	0.405	0.084	0.137	0.602
Feature-Rich	0.358	0.084	0.131	0.630
BiLSTM+Att	0.562	0.096	0.124	0.629
Risk window	0.606	0.097	0.130	0.629
SS3	0.497	0.086	0.133	0.546
EARLIST	0.273	0.148	0.164	0.175
HAN-Psych	0.603	0.081	0.107	0.703
ESDM	0.662	0.077	0.109	0.712

■F1_{ERD} is a F1 metric for the model at its decision point given by itself, while F1_{TRD} is a metric using the entire user history.

(*I***)** Temporal Decision Dynamics



HARBIN INSTITUTE OF TECHNOLOGY