Learning From Wrong Predictions in Low-Resource Neural Machine Translation

Jia Cheng Hu, Roberto Cavicchioli, Giulia Berardinelli, Alessandro Capotondi

Speaker: Jia Cheng Hu

LREC-COLING 2024 Turin, Italy May 2024

Outline

- Introduction
 - Problem
 - Proposal
- Related Works
- USKI
- Experimental Results
- Conclusion

Introduction

Neural Machine Translation

- Converting sentences in one language into another using Neural Networks
- Multiple Benefits of Neural Machine Translation

- Neural Networks in this application are Data Hungry...

Turin, Italy - 2024

Low Resourced and Endangered Langs

- 50% of the 7000 currently spoken languages are estimated to be severely endangered or dead in 2100
- 20 languages spoken by half of the global population

- Neural Machine Translation systems are valuable from a cultural, societal and economic perspective

Turin, Italy - 2024

Proposal

- Common language dataset size N -> Order of millions
- Low resourced languages dataset size M -> order of thousand (at best)

Our work:

Unaligned Sentences KeyTokens Pre-traIning (USKI) -> Learn from the corpus of unaligned sentences New M = M² ~ N

Related Works

Related Works

KeyTokens

Initial dataset $D_{Lx, Ly}$. Let D_{Lx} and D_{Ly} be the corpus of SRC and TRG sentences. Construct $\tilde{D} = D_{L_X} \times D_{L_Y}$

KeyTokens: Given $X_i \in D_{Lx}$ and $Y_j \in D_{Ly}$ an arbitrary pair from \tilde{D} The KeyTokens are defined as $K_{i,i} = Y_i \cap Y_i$

KeyTokens example (Italian – English)

Pair i:

(Xi = La casa è appena dietro la collina, Yi = The house is just over the hill)

Pair j: (Xj =Ecco fatto, il caso è chiuso, Yj = Just like that, the case is over)

KeyTokens: ('just', 'the', 'is', 'over')

Unaligned Sentences KeyTokens Pre-training (USKI)

Goal

- Increase quality of translation
 - By increasing robustness and accuracy over a special set of tokens, the KeyTokens. The most frequent matching tokens between unaligned sentences.

Turin, Italy - 2024

- Increase robustness in autoregressive decoding

Experimental Results

Datasets

Language pair	# training	(# training) ²	# validation	# test
Sel-Ru	7251	52.57 ·10 ⁶	200	200
Ev-Ru	2136	4.56 ·10 ⁶	100	400
Gk-It	8136	66.19 ·10 ⁶	200	1000
Uz-En	3689	13.60 ·10 ⁶	99	199
Wol-It	5916	34.99 ·10 ⁶	200	1000

IoU filtering

Turin, Italy - 2024

Training Overview

BLEU Improvements

Task	Baseline	w/ USKI	$\delta \uparrow$
Sel→Ru	7.05±0.50	8.19±0.38	1.14
Sel←Ru	4.15±0.45	$5.98 {\pm} 0.34$	1.83
Ev→Ru	6.58±0.48	7.26±0.39	0.68
Ev←Ru	$7.36{\pm}0.85$	$8.65{\pm}0.90$	1.29
Gk→It	5.91±0.10	6.23±0,.10	0.32
Gk←lt	4.43±0.07	5.58±0.17	1.15
Uz→En	18.82±0.74	19.94±0.38	1.12
Uz←En	18.40±0.43	$19.07{\pm}0.38$	0.67
Wol→Uk	4.60±0.13	5.00±0.12	0.40
Wol←Uk	$8.25{\pm}0.05$	$8.62{\pm}0.14$	0.37

Accuracy on Single Tokens

Impact of Sub-word tokenization

Vocab size	Baseline	w/ USKI	$\delta \uparrow$
4356	19.07	19.64	0.57
7983	19.68	20.08	0.40
11385	19.49	19.95	0.46
13901	20.06	20.29	0.23

Results against State-of-the-Art

Task	Baseline	w/ USKI	mBART
Sel→Ru	7.05	8.19	18.50
Ev→Ru	6.58	7.26	26.03
Gk→It	5.91	6.23	9.12
Uz→En	18.82	19.94	20.88
Wol→Uk	4.69	5.00	6.24

Conclusion

Conclusion

- Addressing Data Shortage with incorrectly paired sentences
- Avg. 0.9 BLEU increase across all translation tasks with USKI
- Only 13 % of the entire corpus was used

Future works

- -> develop more techniques to leverage the entire corpus
- -> apply techniques on established SotA models.

Thank You

Contacts: jiacheng.hu@unimore.it roberto.cavicchioli@unimore.it giulia.berardinelli@unimore.it alessandro.capotondi@unimore.it

a al

24