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Encoder-Decoder Pre-training

 Multilingual Multimodal Machine Translation

➢ Multilingual Machine Translation.

➢ Multimodal Machine Translation.
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Multilingual Multimodal Translation

 Multilingual Multimodal Translation

➢ Given 𝑀 bilingual corpora with images𝐷𝑎𝑙𝑙 = {𝐷𝑚}𝑚=1
𝑀 , where 𝑀 denote 

the number of the training corpora of 𝑁 languages 𝐿𝑎𝑙𝑙 = {𝐿𝑛}𝑛=1
𝑁 and 𝐿𝑛

denote the 𝑛-th language. Each bilingual corpus with images 𝐷𝑚 =
{𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘}𝑘=1

𝐾 from 𝐷𝑎𝑙𝑙 consists of the source sentences, target sentences, 

and corresponding images. The training objective of multilingual 

multimodal translation can be described as:
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Multilingual Multimodal Alignment

 Multilingual Multimodal Alignment



Multilingual Multimodal Augmentation

 Augmentation
• For image augmentation, we leverage the function 𝐼(∙) to augment the original image by cropping, resizing, 

rotation, cutout, color distortion, Gaussian blur, and Sobel filtering. Then, we divide an image into regular 

non-overlapping patches and mask the chosen patches sampling from a uniform distribution as masked 

image modeling.

• For the multilingual text, we randomly mask some random spans of contiguous tokens. For each sentence, 

we adopt the multilingual data augmentation T(∙) to augment the original sentence of different languages. 

The augmented source sentence and the image {T(𝑥𝑘),T(𝑧𝑘)} with multilingual multimodal augmentation 

(MMA) is used to enhance the contrastive learning to learn the specific representational invariances.



Multilingual Generation

 Multi-task Training



Model Overview
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Flickr Test Set



MSCOCO Test Set

 Evaluation on Multilingual Translation and Extractive summarization.



Ablation study

 Evaluation on Multilingual Translation and Extractive summarization.
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Low-resource setting



Ablation Study
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Conclusion and Future Work

 Conclusion

➢ we introduce m 3P, a state-of-the-art multilingual multimodal machine 

translation model, which supports multiple translation directions of 102 

languages guided by image context.

➢ To narrow the gap among different languages, the image is operated as 

the central language by contrastive learning (MMCL) trained on the 

multilingual text-image pairs. Then, we incorporate the visual context 

into the language representations as the conditional vision-language 

memory (CVLM) for multilingual generation.

➢ Extensive experiments prove the effectiveness of m3P on the Multi30k 

and the extended large-scale dataset InstrMulti102 of 102 languages. 
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