Abhidip Bhattacharyya, Martha Palmer, Christoffer Heckman

LREC-COLING 2024 - The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation

Current methods

LLMs and V+L models

- 1. Internet scale data
- 2. Weak alignments and transfer learning
- 3. Huge models
- 4. Incontext and few shot learning

- 1. Black-box
- 2. Controllability ???
- 3. Interpretability ???

A blond woman wearing sunglass and denim jacket is looking at a parking.

Semantic Role Labeling

- 'Who' is doing 'what' to 'whom', 'where', 'when' and 'how'
- Predicate-arguments structures of sentence

Carl	gave	food	1	to his pet	
Carl	gave	his pe	et	food	
Food Carl	was g	iven	to his	pet	by

Semantic Role Labeling

- 'Who' is doing 'what' to 'whom', 'where', 'when' and 'how'
- Predicate-arguments structures of sentence

[Carl]_who [gave]_V [food]_what to [his pet]_whom

[Carl]_who [gave]_V [his pet]_whom [food]_what

[Food]_what was [given]_V to [his pet]_whom by [Carl]_who

SRL: Propbank...

ARG0	agent	ARG3	starting point, benefactive, attribute
ARG1	patient	ARG4	ending point
ARG2	instrument, benefactive, attribute	ARGM	modifier

Table 1.1: List of arguments in PropBank

• We have used semantic roles as control signals to generate focused image descriptions.

- We have used semantic roles as control signals to generate focused image descriptions.
- SRL-informed models can generate diverse captions based on different linguistic foci.

- We have used semantic roles as control signals to generate focused image descriptions.
- SRL-informed models can generate diverse captions based on different linguistic foci.
- The explanation of the generated caption stems from its grounding in linguistics, which can be attributed to the provided SRL annotation of the image.

- 1. Generate caption based on the input image and SRL annotation of bounding boxes.
- 2. Can generate different Captions for the same image based on SRL
 - a. Different predicates
 - b. Different participants
 - c. Different ARGM roles
- 3. SRL as cue
 - a. Control signal to diversify
 - b. Control amount of information

Data Preparation

image caption pair with entity mapping

ReCAP and Reward function

- 1. Semantic roles as hint of predicate argument structure
- 2. Model should reward caption that follows the predicate argument structure

ReCAP and Reward function

- 1. Semantic roles as hint of predicate argument structure
- 2. Model should reward caption that follows the predicate argument structure
 - a. How to score abidance of predicate argument structure?

ReCAP and Reward function

- 1. Semantic roles as hint of predicate argument structure
- 2. Model should reward caption that follows the predicate argument structure
 - a. How to score abidance of predicate argument structure?

Typical Reward function

Smatch Reward function

ReCAP and Abstract Meaning Representation

We use Smatch score as reward signal-

• Parse sentences with SPRING Parsers to generate AMR

ReCAP and Abstract Meaning Representation

- 1. Semantic roles as hint of predicate argument structure
- 2. Model should reward caption that follows the predicate argument structure
 - a. How to score abidance of predicate argument structure?

We use Smatch score as reward signal-

- Parse sentences with SPRING Parsers to generate AMR
- Calculate Smatch score

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE		
BLIP (base_coco) (Li et al., 2022)	0.33	0.761	0.274	0.237	0.507		
BLIP(large_coco) (Li et al., 2022)	0.33	0.793	0.289	0.243	0.518		
BLIP2(finetuned t5 xl) (Li et al., 2023)	0.35	0.947	0.337	0.264	0.557		
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512		
+SRL	0.33	0.384	0.206	0.185	0.481		
RECAP (ours)							
VL-BART (Cho et al., 2021a)	0.35	0.66	0.27	0.23	0.50		
+SRL	0.4	0.95	0.12	0.17	0.35		
+CLIP-S(Cho et al., 2022a)	0.4	0.945	0.118	0.167	0.346		
+amr scst	0.51	0.857	0.104	0.177	0.344		
+amr scst -CLIP-S	0.51	0.823	0.099	0.175	0.341		

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE	
BLIP (base_coco) (Li et al., 2022)	0.33	0.761	0.274	0.237	0.507	
BLIP(large_coco) (Li et al., 2022)	0.33	0.793	0.289	0.243	0.518	
BLIP2(finetuned t5 xl) (Li et al., 2023)	0.35	0.947	0.337	0.264	0.557	
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512	
+SRL	0.33	0.384	0.206	0.185	0.481	
RECAP (ours)						
VL-BART (Cho et al., 2021a)	0.35	0.66	0.27	0.23	0.50	
+SRL	0.4	0.95	0.12	0.17	0.35	
+CLIP-S(Cho et al., 2022a)	0.4	0.945	0.118	0.167	0.346	
+amr scst	0.51	0.857	0.104	0.177	0.344	
+amr scst -CLIP-S	0.51	0.823	0.099	0.175	0.341	

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE	
BLIP (base_coco) (Li et al., 2022)	0.33	0.761	0.274	0.237	0.507	
BLIP(large_coco) (Li et al., 2022)	0.33	0.793	0.289	0.243	0.518	
BLIP2(finetuned t5 xl) (Li et al., 2023)	0.35	0.947	0.337	0.264	0.557	
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512	
+SRL	0.33	0.384	0.206	0.185	0.481	
RECAP (ours)						
VL-BART (Cho et al., 2021a)	0.35	0.66	0.27	0.23	0.50	
+SRL	0.4	0.95	0.12	0.17	0.35	
+CLIP-S(Cho et al., 2022a)	0.4	0.945	0.118	0.167	0.346	
+amr scst	0.51	0.857	0.104	0.177	0.344	
+amr scst -CLIP-S	0.51	0.823	0.099	0.175	0.341	

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE	
BLIP (base_coco) (Li et al., 2022)	0.33	0.761	0.274	0.237	0.507	
BLIP(large_coco) (Li et al., 2022)	0.33	0.793	0.289	0.243	0.518	
BLIP2(finetuned t5 xl) (Li et al., 2023)	0.35	0.947	0.337	0.264	0.557	
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512	
+SRL	0.33	0.384	0.206	0.185	0.481	
RECAP (ours)						
VL-BART (Cho et al., 2021a)	0.35	0.66	0.27	0.23	0.50	
+SRL	0.4	0.95	0.12	0.17	0.35	
+CLIP-S(Cho et al., 2022a)	0.4	0.945	0.118	0.167	0.346	
+amr scst	0.51	0.857	0.104	0.177	0.344	
+amr scst -CLIP-S	0.51	0.823	0.099	0.175	0.341	

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE	
BLIP (base_coco) (Li et al., 2022)	0.33	0.761	0.274	0.237	0.507	
BLIP(large_coco) (Li et al., 2022)	0.33	0.793	0.289	0.243	0.518	
BLIP2(finetuned t5 xl) (Li et al., 2023)	0.35	0.947	0.337	0.264	0.557	
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512	
+SRL	0.33	0.384	0.206	0.185	0.481	
RECAP (ours)						
VL-BART (Cho et al., 2021a)	0.35	0.66	0.27	0.23	0.50	
+SRL	0.4	0.95	0.12	0.17	0.35	
+CLIP-S(Cho et al., 2022a)	0.4	0.945	0.118	0.167	0.346	
+amr scst	0.51	0.857	0.104	0.177	0.344	
+amr scst -CLIP-S	0.51	0.823	0.099	0.175	0.341	

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE	
BLIP (base_coco) (Li et al., 2022)	0.33	0.761	0.274	0.237	0.507	
BLIP(large_coco) (Li et al., 2022)	0.33	0.793	0.289	0.243	0.518	
BLIP2(finetuned t5 xl) (Li et al., 2023)	0.35	0.947	0.337	0.264	0.557	
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512	
+SRL	0.33	0.384	0.206	0.185	0.481	
RECAP (ours)						
VL-BART (Cho et al., 2021a)	0.35	0.66	0.27	0.23	0.50	
+SRL	0.4	0.95	0.12	0.17	0.35	
+CLIP-S(Cho et al., 2022a)	0.4	0.945	0.118	0.167	0.346	
+amr scst	0.51	0.857	0.104	0.177	0.344	
+amr scst -CLIP-S	0.51	0.823	0.099	0.175	0.341	

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE	
BLIP (base_coco) (Li et al., 2022)	0.33	0.761	0.274	0.237	0.507	
BLIP(large_coco) (Li et al., 2022)	0.33	0.793	0.289	0.243	0.518	
BLIP2(finetuned t5 xl) (Li et al., 2023)	0.35	0.947	0.337	0.264	0.557	
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512	
+SRL	0.33	0.384	0.206	0.185	0.481	
RECAP (ours)						
VL-BART (Cho et al., 2021a)	0.35	0.66	0.27	0.23	0.50	
+SRL	0.4	0.95	0.12	0.17	0.35	
+CLIP-S(Cho et al., 2022a)	0.4	0.945	0.118	0.167	0.346	
+amr scst	0.51	0.857	0.104	0.177	0.344	
+amr scst —CLIP-S	0.51	0.823	0.099	0.175	0.341	

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE
BLIP (base_coco) (Li et al., 2022)	0.33	0.761	0.274	0.237	0.507
BLIP(large_coco) (Li et al., 2022)	0.33	0.793	0.289	0.243	0.518
BLIP2(finetuned t5 xl) (Li et al., 2023)	0.35	0.947	0.337	0.264	0.557
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512
+SRL	0.33	0.384	0.206	0.185	0.481
RECAP (ours)					
VL-BART (Cho et al., 2021a)	0.35	0.66	0.27	0.23	0.50
+SRL	0.4	0.95	0.12	0.17	0.35
+CLIP-S(Cho et al., 2022a)	0.4	0.945	0.118	0.167	0.346
+amr scst	0.51	0.857	0.104	0.177	0.344
+amr scst —CLIP-S	0.51	0.823	0.099	0.175	0.341

Qualitative Analysis: Arguments accommodation

Two girls are playing soccer

Two girls playing soccer are going for the ball

Qualitative Analysis: Adjoining

Two girls are playing soccer

Two girls wearing uniforms are playing soccer

Qualitative Analysis: Diversified based on Predicate-Argument

Two girls are playing soccer

A young girl is wearing a red and white soccer uniform

Qualitative Analysis: Activity vs State

A group of people is walking down a sidewalk lined with trees.

A group of people is standing in a park.

• A person wearing a yellow jacket and blue hat **as he walks down a snow covered road.**

- A person wearing a yellow jacket and blue hat **as he walks down a snow covered road.**
- A person is walking **down a snow** covered road.

- A person wearing a yellow jacket and blue hat as he walks down a snow covered road.
- A person is walking **down a snow covered road**.
- A person is walking along a trail **in the snow.**

ReCAP: Analysis

- 1. Generated caption is focused w.r.t given SRL
- 2. Reflect predicate-argument structures given in the input SRL
- 3. Can be explained with different linguistic aspects
 - a. Adjoining of information
 - b. Accommodation arguments
 - c. Choose different predicate based on arguments
 - d. Activity vs State
 - e. ARGM roles

Model	Smatch	CIDEr	BLEU-4	METEOR	ROUGE			
TDBU (Anderson et al., 2018)	0.31	0.53	0.253	0.214	0.512			
+SRL	0.33	0.384	0.206	0.185	0.481			
RECAP (ours)								
VL-BART (Cho et al., 2021) +SRL	$\begin{array}{c c} 0.35\\ 0.4\end{array}$	$\begin{array}{c} 0.66 \\ 0.95 \end{array}$	$\begin{array}{c} 0.27 \\ 0.12 \end{array}$	$\begin{array}{c} 0.23 \\ 0.17 \end{array}$	$\begin{array}{c} 0.50 \\ 0.35 \end{array}$			

GT sentence: A woman kayaking in a yellow kayak with her dog.

Without SCST: A person kayaking on a lake with a dog.

With AMR SCST: A person in a blue wetsuit kayaking on a lake with a black and yellow dog.

Summary

Summary

Summary

- 1. Generated caption is focused w.r.t given SRL
- 2. Reflect predicate-argument structures given in the input SRL
- 3. Can be explained with different linguistic aspects
 - a. Adjoining of information
 - b. Accommodation arguments
 - c. Choose different predicate based on arguments
 - d. Activity vs State
 - e. ARGM roles

Can be explained with different linguistic aspects

- a. Adjoining of information
- b. Accommodation arguments
- c. Choose different predicate based on arguments
- d. Activity vs State verbs

Questions?