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Few-shot Temporal Pruning Accelerates Diffusion 
Models for Text Generation



A short summary of our work

• We propose a novel method called Few-shot Temporal Pruning to accelerate
Diffusion Model for faster text generation, getting a speed up for up to 400x in 
down to less than 1 minute of post-training optimization.



Introduction

• Previous diffusion models for text generation are slow – requiring 50-2000 
sampling steps

• Most of the accelerating methods ignore the importance of  the distribution of 
sampling steps / requires further training

•  May not be applicable under tight resource and time restrictions



Observation

•  3-step sampling, paraphrasing in 
DiffuSeq (sampling steps can be 
selected from [0,1999])

•  fixing the initial and final sampling 
steps and varying the middle step

•  substantial changes in BLEU score of 
the generated samples!! (from 0.12 –
0.17)



Finding the steps that really matters

• Significant Steps: eliminating these samping steps, the progressive refinement of 
samples would be disrupted, and diffusion models would no longer generate 
high-quality outputs. 

• Redundant Steps: pruning these non-critical sampling steps enhances the 
efficiency of the sampling process without compromising the quality. 

Defining “significant steps” and “redundant steps”
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Optimization Loop of Temporal Pruning
Feed the source and distribution of sampling steps ଵ ଶ ౌ౨౫ౚ

to a frozen Diffusion model 
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Optimization Loop of Temporal Pruning
use the source text and distribution of sampling steps [Sଵ, Sଶ, … Sౌ౨౫ౚ

] to generate new sample pred and 
compute BLEU with GT
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Optimization Loop of Temporal Pruning
Use a Bayesian optimizer to use evaluated BLEU and former information to generate next better 

sample steps  
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Optimization Loop of Temporal Pruning
Update the new sampling steps to ଵ ଶ ౌ౨౫ౚ
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Optimization Loop of Temporal Pruning
After some optimization loops, get the optimal distribution of sampling steps 
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How does Bayesian optimizer optimize?

• Designed for optimizing black-box, expensive functions, always used for hyper-
parameter tuning, in our method, used to select next better ଵ ଶ ேುೝೠ

. 

• It use an observation set O to record all previous information(explored ଵ ଶ ேುೝೠ
, 

and its corresponding R)

• Iteratively update Gaussian process posterior(it models the objective 
function(performance function)

• Calculate an inexpensive acquisition function(instead of perform a real sampling process, 
it is expensive!) in a subset D’ of the entire set of possible distributions D.

A brief introduction to Bayesian Optimization we use



How does Bayesian optimizer optimize?... Cont’d

• D’ is first initialized randomly, then explored using Limited-memory BFGS 
optimization algorithm(for 20 iters)

• We explore next ଵ ଶ ேುೝೠ
which satisfies 

A brief introduction to Bayesian Optimization we use



Few-shot Temporal Pruning

• We modify the data used to perform a whole sampling process:

• Initially, we use a whole validation set to search for ୮୲୧୫ୟ୪ .

• It is indeed slow to sample 7000+ items in one run

• Cut them down to 20 random items in the validation set

• justifies the robustness in scenarios with limited data availability

A more data-efficient variant of Temporal Pruning

src: "Das war 
der 

Beschluß."



Baselines, dataset and benchmark
• Baseline:

• Transformer-base

• Discrete Diffusion: Multinomial Diffusion and Absorbing Diffusion

• Continuous Diffusion: DiffuSeq

• Dataset:

• Machine Translation: IWSLT14 DE-EN, WMT16 EN-RO, WMT14 EN-DE

• Question Generation: Quasar-T

• Paraphrasing: QQP dataset

• Benchmark: BLEU score(Metric), Running Time, Inference Speedup



Results for Generation Quality



Results for Running Time & Inference Speedup

Running Time Inference Speedup



Analysis:  Overcoming Sampling Degradation via Temporal Pruning

•  Multinomial Diffusion, after several 
iterations, shows a tendency of

ఏ ௧ିଵ ௧ ௧

• essentially replicates the previous state

• degradation in sampling performance

•  Redundant steps negatively impact the 
model performance in two ways: 

• hinder sentences from reaching an 
optimal state

• consume computational resources 
without improving the output quality 
after degradation

 Performance degradation on the WMT16 test 
set using the vanilla multinomial diffusion

model.
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Analysis:  Insufficient Noising at Early Steps

• A notable shift in the distribution of the 
optimized sampling steps

• a tendency to concentrate at higher 
steps

• Higher steps are of greater importance: 

• the model is exposed to a substantial 
amount of noise during these stages

• more comprehensive training 



Conclusion

• We present Few-shot Temporal Pruning, a robust, effective and training-free 
approach to accelerate diffusion models for text generation

• a thorough qualitative analysis of the effects of redundant sampling steps on 
model performance and the optimized distribution of sampling steps



More info

• Please keep in update with GitHub repo: 

• https://github.com/bc-li/temporal-pruning

• If you have other questions, feel free to contact bcli@mail.ustc.edu.cn



Thanks for listening!
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