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A short summary of our work

* We propose a novel method called Few-shot Temporal Pruning to accelerate
Diffusion Model for faster text generation, getting a speed up for up to 400x in
down to less than 1 minute of post-training optimization.



Introduction

* Previous diffusion models for text generation are slow - requiring 50-2000
sampling steps

* Most of the accelerating methods ignore the importance of the distribution of
sampling steps / requires further training

* May not be applicable under tight resource and time restrictions



Observation

® 3-step sampling, paraphrasing in
DiffuSeq (sampling steps can be 0.17
selected from [0,1999])
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e fixing the initial and final sampling
steps and varying the middle step
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BLEU Score
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® substantial changes in BLEU score of
the generated samples!! (from 0.12 - 0.13
0.17)
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Finding the steps that really matters

Defining “significant steps” and “redundant steps”

* Significant Steps: eliminating these samping steps, the progressive refinement of
samples would be disrupted, and diffusion models would no longer generate
high-quality outputs.

* Redundant Steps: pruning these non-critical sampling steps enhances the
efficiency of the sampling process without compromising the quality.



Optimization Loop of Temporal Pruning

Uniformly initialize the distribution of sampling steps [S;, S, ... Sy, ]
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Optimization Loop of Temporal Pruning

Feed the source and distribution of sampling steps [S;, S5, ... Sy
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Optimization Loop of Temporal Pruning

use the source text and distribution of sampling steps [S;,S,, ... Sy, . ] to generate new sample pred and
compute BLEU with GT
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Optimization Loop of Temporal Pruning

Use a Bayesian optimizer to use evaluated BLEU and former information to generate next better
sample steps
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Optimization Loop of Temporal Pruning

Update the new sampling steps to [S;, Sy, ... SN, oy]
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Optimization Loop of Temporal Pruning

After some optimization loops, get the optimal distribution of sampling steps
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How does Bayesian optimizer optimize?
A brief introduction to Bayesian Optimization we use

Designed for optimizing black-box, expensive functions, always used for hyper-
parameter tuning, in our method, used to select next better [Sy,S;, .Sy, .1

It use an observation set O to record all previous information(explored[S;,S;, ... Sy,........];
and its corresponding R)

Iteratively update Gaussian process posterior(it models the objective
function(performance function)

R(-) = BLEU(M(-), Yy)

Calculate an inexpensive acquisition function(instead of perform a real sampling process,
it is expensive!) in a subset D’ of the entire set of possible distributions D.



How does Bayesian optimizer optimize?... Cont'd
A brief introduction to Bayesian Optimization we use

* D’ is first initialized randomly, then explored using Limited-memory BFGS
optimization algorithm(for 20 iters)

* We explore next S =[S4,S,,...Sy which satisfies

Pruned]

Soptimal — argmaxsco R(S)



Few-shot Temporal Pruning
A more data-efficient variant of Temporal Pruning

We modify the data used to perform a whole sampling process:
src: "Das war
der
BeschluB."

Initially, we use a whole validation set to search for Sgptimal -

It is indeed slow to sample 7000+ items in one run
Cut them down to 20 random items in the validation set

justifies the robustness in scenarios with limited data availability



Baselines, dataset and benchmark

* Baseline:
* Transformer-base
* Discrete Diffusion: Multinomial Diffusion and Absorbing Diffusion
® (Continuous Diffusion: DiffuSeq
* Dataset:
* Machine Translation: IWSLT14 DE-EN, WMT16 EN-RO, WMT14 EN-DE
® Question Generation: Quasar-T
* Paraphrasing: QQP dataset

* Benchmark: BLEU score(Metric), Running Time, Inference Speedup



Results for Generation Quality

Model | Steps  Shots  IWSLT14oeen' WMT16 enro  WMT14 enoe QG QQP
Transformer-base - - 34.51% 34.16° 27.538 16.63" 27.221
Absorbing Diffusion
Vanilla 50 - 28.95 30.88 22.98 1749 24.34
Vanilla 4 - 27.16 27.41 18.70 17.45 24.07
Temporal Pruning 4 Full Set 28.61 31.03 22.42 17.47 24.41
Temporal Pruning 4 20 28.12 29.51 21.69 17.47  24.21
Multinomial Diffusion
Vanilla 50 - 13.12 4.50 0.32 1745 24.06
Vanilla 4 - 24.23 27.80 17.19 17.08 21.52
Temporal Pruning 4 Full Set 26.96 29.69 21.44 17.48 23.70
Temporal Pruning 4 20 26.83 29.88 20.98 17.38  23.22
DiffuSeq
Vanilla 2000 - 1231 2413
Vanilla 4 - - - - 16.06 19.05
Temporal Pruning 4 Full Set 16.38 22.32
Temporal Pruning 4 10 16.38 21.90




Results for Running Time & Inference Speedup

Model | Shots Total Inference  Bayesian
DiffuSeq
QaP FE%II 1(?6232 min 1096232 min 882 s
2 min 2 min . S i
QG Full 1894 min  18.94 min 0.04s hadel | L Baseline  ‘Specilp
20 0.66 min  0.66 min 0.04s DiffuSeq
& | phm mm
Full 69.17 min  69.17 min 0.04s .14 sps ; sps X
IWSLT140EEN | 55 076min  0.76min 0045 -
T Full 2250min  2250min  0.04s Absorbing
i 20 0.84 min 0.84 min 0.04s IWSLT14 pe-en | 182.91sps  18.50 sps 9.88x
WRAT A s Full 33.33 min  33.33 min 0.04 s WMT16 En-RO 114.98 sps 11.32 sps 10.15x
20 0.84 min  0.84 min 0.05s WMT14 en-DE 115.12sps  10.95 sps 10.51x
QG e e S QG 73.40sps  6.70sps  10.95x
il R QQP 92.47sps ~ 9.20sps  10.05x
_— Ful 45.83min  4583min  0.04s ke <0 8P :
20 0.82min  0.82 min 0.05s Multinomial
Multinomial IWSLT14 DE-EN 134.27 sps  14.51 sps 9.25x
IWSLT14 oeen | Ul 80.00min  80.00 min 0.04s WMT16 EN-RO 68.86 sps 6.42 sps 10.72x
20 092min  092min  0.04s WMT14 en-DE 64.01sps  5.92 sps 10.81x
WilTigemes | op o Rggan Eegs QG 5217sps  4.27sps  12.21x
.96 min 0.96 min 0.04s p 1271
WMT14enoe | Ful  51.67min  5167min 0045 QQ 80.86sps  6.36 sps 71X
20 0.93 min 0.93 min 0.04 s
aa Full  65.83min  65.83 min 0.04s
20 0.90 min 0.90 min 0.04s
QQP Full 5417 min  54.17 min 0.04s
20 0.93 min 0.93 min 0.04 s

Running Time Inference Speedup



Analysis: Overcoming Sampling Degradation via Temporal Pruning

e Multinomial Diffusion, after several
iterations, shows a tendency of

Po(Xt—1]|x¢) = x¢ 25

® essentially replicates the previous state 20

® degradation in sampling performance

BLEU Score
=
(6]

=
o
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* Redundant steps negatively impact the
model performance in two ways:

* hinder sentences from reaching an oo O
optimal state
. Performance degradation on the WMT16 test
* consume computatlonal resources set using the vanilla multinomial diffusion

without improving the output quality model.
after degradation



Analysis: Overcoming Sampling Degradation via Temporal Pruning

e Multinomial Diffusion, after several

Source: ich danke ihnen flir ihre aufmerksamekeit.
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Multinomial Diffusion with Temporal Pruning, 4 steps

* Redundant steps negatively impact the
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. . 4 o thank you very much for your attention .
* hinder sentences from reaching an
optimal state Table 4: A comparison of samples generated from
multinomial diffusion w/ and w/o Temporal Pruning
® consume Computationa[ resources on IWSLT dataset. Words are in lower case, and

without improving the output quality ## denotes the sub-word tokenization artifacts.

after degradation



Analysis: Insufficient Noising at Early Steps

* A notable shift in the distribution of the
optimized sampling steps

® atendency to concentrate at higher
steps

* Higher steps are of greater importance:

* the model is exposed to a substantial
amount of noise during these stages

®* more comprehensive training
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Figure 4: The distribution of sampling steps
throughout the optimization process, with each
color indicating an individual timestep S; belonging
to the pruned set S = [S4, S5, S3, Sy, S5]. The col-
ored lines from top to bottom correspond to 57, S5,
Ss, S4, and Ss, respectively.



Conclusion

* We present Few-shot Temporal Pruning, a robust, effective and training-free
approach to accelerate diffusion models for text generation

* athorough qualitative analysis of the effects of redundant sampling steps on
model performance and the optimized distribution of sampling steps



More info

® Please keep in update with GitHub repo:
* https://github.com/bc-li/temporal-pruning

* |f you have other questions, feel free to contact bcli@mail.ustc.edu.cn



Thanks for listening!
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