CMNEE: A Large-Scale Document-Level Event Extraction Dataset based on Open-Source Chinese Military News

Mengna Zhu, Zijie Xu, Kaisheng Zeng, Kaiming Xiao, Mao Wang, Wenjun Ke, Hongbin Huang

LREC-COLING 2024

Background

- Events are the basic units of human activities and interactions, containing rich information.
- Event extraction refers to the extraction of structured information from unstructured text, which is typically separated into two subtasks: event detection and event argument extraction.
- Current research mainly focuses on the general news (ACE 2005, MAVEN, etc) or financial domains (ChfinAnn, Duee-fin), with only relatively fewer studies for military domain, which impedes the study of event extraction in this domain.

Background

Existing datasets for EE related tasks

Level	Dataset	Domain	Language	Docs	Evtypes	ArgRs	Events	ED	EAE
Sent	ACE 2005	general	English	599	33	35	4,090	\checkmark	\checkmark
	MAVEN	general	English	4,480	168	-	111,611	\checkmark	×
	DuEE	financial	Chinese	11,224	65	121	19,640	\checkmark	\checkmark
	MNEE	military	Chinese	13,000	8	10	6,997	\checkmark	\checkmark
Doc	RAMS	general	English	3,993	139	65	9,124	\checkmark	\checkmark
	WikiEvents	general	English	246	50	59	3951	\checkmark	\checkmark
	Duee-fin	financial	Chinese	11,700	13	92	11,031	\checkmark	\checkmark
	ChfinAnn	financial	Chinese	32,040	5	24	47,824	\checkmark	\checkmark
	DocEE	general	English	27,485	59	356	27,485	×	\checkmark
	CMNEE	military	Chinese	17,000	8	11	29223	\checkmark	\checkmark

Background

An example of CMNEE

S01: In this air campaign to attack the Taliban and Osama bin Laden in Afghanistan, the UK has employed two nuclear-powered attack submarines.
S02: The two submarines were the British Navy Trafalgar class, HMS Trafalgar and HMS Triumph.
S03: One of them, HMS Trafalgar, is a British submarine that participated in the Argonaut 2001 exercise and is permanently deployed in the Mediterranean Sea

S06: The first firing of Tomahawk cruise missiles from a British naval vessel took place in 1999, when the British Fast Class submarine HMS Splendor fired multiple missiles attacking targets in Yugoslavia.
S07: Originally, the UK designed the Trafalgar class submarine for the North Atlantic and Mediterranean confrontation with the former Soviet Union during the Cold War.

Conflict (attack)				
Subject	UK			
Object	Osama bin Laden			
Location	Afghanistan			

Conflict (attack)				
Subject	UK			
Object	Taliban			
Location	Afghanistan			

Deploy (deployed)				
Subject	British Navy			
Militaryforce	HMS Trafalgar			
Location	Mediterranean Sea			

	UK, British, UK			
Co-reference arguments	British Navy, British naval			
3.92	HMS Trafalgar, HMS Trafalgar			

Conflict (attacking)				
Subject	British naval			
Object	targets in Yugoslavia			
Date	1999			

Conflict (co	Conflict (confrontation)					
Subject	UK					
Object	the former Soviet Union					
Location	the North Atlantic					
Date	the Cold War					

Conflict (confrontation)					
Subject	UK				
Object	the former Soviet Union				
Location	Mediterranean				
Date	the Cold War				

Construction

Methodology

Construction

Event schema

Event type		Argum	ent role	
Experiment	Subject	Equipment	Date	Location
Manoeuvre	Subject	Content	Date	Area
Deploy	Subject	Militaryforce	Date	Location
Support	Subject	Object	Date	Materials
Accident	Subject	Result	Date	Location
Exhibit	Subject	Equipment	Date	Location
Conflict	Subject	Object	Date	Location
Injure	Subject	Quantity	Date	Location

Analysis

Figure 1 Data sources

Figure 2 Event type distribution

Figure 3 Multi-events distribution

Overlapping events proportion: 42% Long arguemnts (more than 10 characteristics): 17%

Evaluation

Overall results

Models	Event Detection			Event Argument Extraction		
	Р	R	F1	Р	R	F1
DCFEE-O	-	-	-	30.3	22.3	25.7
DCFEE-M	-	-	-	26.4	22.0	24.0
GreedyDec	-	-	-	39.4	19.9	26.4
Doc2EDAG	-	-	-	54.3	23.9	33.2
DEPPN	-	-	-	38.2	35.0	36.5
BERT+CRF	73.1	77.7	75.3	63.1	52.3	57.2
EEQA	65.8	80.5	72.4	39.0	39.1	39.0
TEXT2EVENT	30.1	60.6	40.2	31.3	41.3	35.5
PAIE	-	-	-	72.0	67.0	69.4

Evaluation

Error analysis and expected directions

- Identification Mistakes (nearly 50%)
 - models can better understand event semantic information based on complex text
- Majority Bias (about 20%)
 - models can cope with data imbalance and accomplish the extraction of fewer sample events more efficiently
- Extraction Boundary (more than 30%)
 - models can better determine the extraction boundaries so that the extracted information is concise and effective

Thanks!