Mixture-of-Prompt-Experts for Multi-modal Semantic Understanding

Zichen Wu, Hsiu-Yuan Huang, Fanyi Qu and Yunfang Wu

Peking University

Motivation

- Prompt tuning in few-shot settings, especially continuous prompt tuning, is favored since it is data-efficient, preserves generalization and computationally feasible.
- In multimodal field, continuous prompt methods in CLIP-series model is largely explored

CoOP (Zhou et al. 2022)

Single modal prompt, w/o modality interaction

Maximize similarity Text Encoder Prompts Prompts Prompts Prompts Prompts Prompts Prompts

CoCoOP (Zhou et al. 2022) Single modal prompt, w/ modality interaction MaPLE (Khattak et al. 2023)

Multi modal prompt, w/ modality interaction

Motivation

- We aim to extend the multimodal prompting research on two aspects
 - Backbone Architecture: Dual Encoder -> Unified Encoder
 - Task: Shallow multimodal task (Image Classificaion) -> Deeper multimodal semantic understanding

Motivation

- In tasks involving image-text semantic understanding, three situations may be encountered:
 - The label information is contained within the text.
 - The label information is contained within the image.
 - The label information emerges from **the interaction between the text and the image**.
- We design three **prompt experts**, to deal with the three situations
 - Image and text prompt expert, extract semantic features within a single modality
 - **Unified prompt expert**, capturing inter-modality Information

 To enable a smooth transition between the single-modal and unified prompts, a block-aware crossattention between prompt experts is introduced.

Contribution

- Propose a novel mixture-of-prompt-experts, filling the blank in multi-modal continuous prompting on unified VLMs.
- Present a block-aware prompt fusion mechanism, activates deep interactions and balances the twin objectives of single-model specialization and multi-modal fusion.
- We conduct experiments on the few-shot multi-modal sarcasm detection and sentiment analysis, outperforming the previous state-of-the-art methods.

Model

Prompt Attention

- Invisible attention mask
- Visible attention fields related to prompt
- Visible attention fields in VLMo

Example

Experiments

- Task: Multi-modal Sarcasm Detection (Primary), Multi-modal Sentiment Analysis
- Backbone model: VLMo
- Data:
 - For MSD, we sampled 32 shots from MSDT (Cai et al., 2019)
 - to form training/validation set.

	Full Split		Few-	Ava longth	
	#Sarcasm	#Nonsarcasm	#Sarcasm	#Nonsarcasm	Avg. length
Train	8642	11174	16	16	21.85
Dev	959	1451	16	16	21.79
Test	959	1450	959	1450	22.22

- For MSA, we use the sampled data from MVSA-S as Yu et al. 2022.
- Metric: Accuracy, F1 (Macro-F1 for MSA)

Comparing Methods (Part)

- Multimodal Pre-trained Methods: CLIP, VLMo, InstructBLIP(VLLM)
- Multimodal Prompting Methods (on CLIP): CoOP, MaPLE, CMPA
- Multi-modal Sarcasm Detection methods: HFM, ResBERT, HKE
- Prompting Methods implemented on VLMo: Soft Prompt, P-Tuning, P-Tuning v2

	MSD	MSA
Manual Prompt Soft Prompt P-Tuning	The image-text pair is [MASK]. <text> [V1] [V2] [Vn] <text> [V1] [V2] [Vn] The image-text pair is [MASK]. <text></text></text></text>	Sentiment of the text: [MASK]. <text> [V1] [V2] [Vn] <text> [V1] [V2] [Vn] Sentiment of the text: [MASK]. <text></text></text></text>
Instruction Prompt	 Text: <text> Answer the question: Is this image-text pair sarcastic or nonsarcastic? Answer:</text> Text: <text> Based on the image and text, answer the question: Is this image-text pair sarcastic or nonsarcastic? Answer:</text> Text: <text> Combining the text, is this sarcastic or nonsarcastic? Answer:</text> 	 1.Text:<text> Answer the question: Which sentiment does this image-text pair contain, negative, neutral or positive? Answer:</text> 2.Text:<text> Based on the image and text, answer the question: Which sentiment does this image-text pair contain, negative, neutral or positive? Answer:</text> 3.Text:<text> Combining the text, which sentiment does this contain, negative, neutral or positive? Answer:</text>

Results

On sampled MSDT

Methods	w/ CH	w/ LMH	Accuracy	Precision	Recall	F1
HFM (Cai et al., 2019)	\checkmark		58.88 (2.93)	48.93 (2.00)	65.83 (12.28)	55.73 (4.51)
resBERT (Pan et al., 2020)	\checkmark		58.85 (2.04)	48.95 (1.62)	70.87 (4.61)	57.82 (0.45)
HKE (Liu et al., 2022a)	\checkmark		60.76 (4.00)	52.56 (3.41)	74.43 (14.13)	61.02 (3.80)
VLMo (Bao et al., 2022)	\checkmark		60.18 (3.62)	50.97 (4.26)	60.31 (5.28)	53.96 (3.65)
CLIP (Radford et al., 2021)	\checkmark		61.31 (1.28)	51.24 (1.30)	68.33 (8.26)	58.26 (2.22)
InstructBLIP (zero-shot)		\checkmark	57.59 (2.87)	47.22 (3.12)	50.33 (13.25)	47.89 (5.49)
InstructBLIP (Dai et al., 2023)		\checkmark	60.56 (4.02)	50.57 (3.29)	78.13 (5.94)	61.05 (2.11)
CoOp (Zhou et al., 2022b)	\checkmark		63.00 (5.99)	53.06 (6.42)	67.71 (4.69)	59.41 (5.23)
CMPA (Liu et al., 2023b)	\checkmark		59.94 (2.34)	49.75 (2.35)	63.43 (4.08)	55.75 (2.86)
MaPLE (Khattak et al., 2023)	\checkmark		61.28 (2.43)	50.87 (1.95)	78.00 (6.42)	61.26 (2.80)
VLMo + Manual Prompt		\checkmark	59.85 (2.77)	50.12 (2.64)	73.20 (8.25)	59.10 (1.15)
+ Soft Prompt	\checkmark		62.74 (0.65)	53.26 (1.56)	57.84 (11.09)	54.74 (4.71)
+ P-Tuning (Liu et al., 2021b)		\checkmark	60.34 (1.61)	50.11 (1.31)	75.46 (4.03)	60.21 (2.06)
+ P-Tuning v2 (Liu et al., 2021a)	\checkmark		61.78 (3.02)	52.23 (2.94)	63.99 (15.12)	56.36 (5.98)
VLMo + MoPE-BAF	\checkmark		64.06 (0.71)	53.69 (4.87)	71.60 (2.78)	61.32 (2.57)
+ MoPE-BAF + MP		\checkmark	65.32 (3.30)	55.92 (3.91)	68.64 (7.52)	61.32 (1.15)

Table 4: Experimental results on the MSDT dataset with 32 training samples, where the standard deviations are shown in parentheses. CH refers to the classification head and LMH refers to the language modeling head. MP means Manual Prompt.

Results

Ablation Study

Methods	A	Ρ	R	F1
VLMo	60.18	50.97	60.31	53.96
+ MoPE	61.73	51.35	75.13	60.94
+ MoPE + BAF	64.06	53.69	71.60	61.32
VLMo + MP	59.85	50.12	73.20	59.10
+ MoPE	64.06	53.98	70.73	60.93
+ MoPE + BAF	65.32	55.92	68.64	61.32

Table 6: Ablative analysis of the MoPE and BAF modules.

- Model Analysis
 - Prompt length
 - Block number
 - Training shots

Figure 4: (a) F1 performance training MoPE with different prompt lengths. (b) F1 scores training MoPE-BAF with different block numbers. (c) Comparison between VLMo and VLMo + MoPE-BAF under different training shots.

Results

On sampled MVSA-S

Methods	Acc	Mac-F1	Wtd-F1
MVAN	42.77	36.75	44.14
MGNNS	34.4	32.05	36.9
UP-MPF	58.21	51.08	58.49
CLIP	49.51	45.67	51.63
СоОр	51.47	40.58	48.52
MaPLe	50.49	43.06	51.74
CMPA	56.74	42.75	53.86
InstructBLIP	59.80	48.59	59.73
VLMo + MP (zero-shot)	59.07	38.53	51.94
VLMo + MP	60.79	52.62	61.27
VLMo + P-Tuning	61.03	51.28	60.75
VLMo + MoPE-BAF + MP	63.48	52.92	62.40

Conclusion

- MoPE-BAF, a new multi-modal soft prompt framework catering to unified VLMs for few-shot multi-modal tasks.
 - two prompt experts to serve the text and image modality separately with a better specialization ability
 - activate the interactions of prompt experts by inserting cross-modal prompt attention between adjacent Transformer blocks
- Future Work
 - incorporate task-related external knowledge into prompt design
 - MoPE has high sensitivity, how to control it?

