

Towards Autonomous Tool Utilization in Language Models: A Unified, Efficient and Scalable Framework

Zhi Li, Yicheng Li, Hequan Ye and Yin Zhang

Zhejiang University, China {zhili, yichengli, yehequan, zhangyin98}@zju.edu.cn

Background

Instruction: You are a helpful assistant. Answer the following questions as best you can. You can use external tools. Specifically, you have access to the following API: Weather. The API queries must adhere to the following structure:{"location": string, "days": integer}

Whether: blue. Which : pink. How: orange.

Figure 1: Using weather queries as an example, we showcase the prevailing methods of tool utilization.

Motivation

Potential Drawbacks:

- the limited context length
- additional retrieval steps leading to cumulative errors
- plays a passive role

Question:

Can we develop a language model capable of autonomously solving problems without the external prompt guidance ?

Comparison

Method	End to End Learning			Advantage		
Mothod	Whether	Which	How	Efficient	Scalable	Autonomous
Toolformer (Schick et al., 2023)	 ✓ 	 ✓ 	 ✓ 			√
TRICE (Qiao et al., 2023)	\checkmark		\checkmark			\checkmark
Gorilla(Patil et al., 2023)			\checkmark	\checkmark	\checkmark	
ToolLLM (Qin et al., 2023)			\checkmark	\checkmark	\checkmark	
GPT4Tools(Yang et al., 2023)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
ToolAlpaca (Tang et al., 2023)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Our Work	\checkmark	✓	\checkmark	\checkmark	\checkmark	√

Table 1: Comparative analysis of various studies. 'Autonomous' implies that there is no need to include any tool-related information in the prompt, as the model fully internalizes the knowledge and ability to use the tools.

Problem Formalization

Let's first agree on the abbreviations for the terms:

- · Y denotes the target response.
- · X stands for the query.
- $\rm W_{e}$ determines whether to use the tool.
- · W_i indicates which tool to use.
- H indicates how to use the tool.

```
P(Y | W_e, W_i, H, X)
\downarrow
P(Y, W_e, W_i, H | X)
```

Unified Conditional Probability Decomposition

$$egin{aligned} P(\mathrm{Y},\mathrm{W_e},\mathrm{W_i},\mathrm{H}\mid\mathrm{X}) \ &= P(\mathrm{W_e}\mid\mathrm{X}) \ & imes P(\mathrm{W_i}\mid\mathrm{W_e},\mathrm{X}) \ & imes P(\mathrm{H}\mid\mathrm{W_e},\mathrm{W_i},\mathrm{X}) \ & imes P(\mathrm{H}\mid\mathrm{W_e},\mathrm{W_i},\mathrm{X}) \ & imes P(\mathrm{Y}\mid\mathrm{H},\mathrm{W_e},\mathrm{W_i},\mathrm{X}) \end{aligned}$$

Query categories:

- Solvable: translation, sentiment analysis ...
- Verifiable : mathematical reasoning, factual matters ...
- Unsolvable: real-time, multimodal ...

Efficient Dataset Construction

$P(Y | W_e, W_i, H, X) \longrightarrow P(Y, W_e, W_i, H | X)$

Previous Method

Instruction: You are a helpful assistant. Answer the following questions as best you can. You can use external tools. Specifically, you have access to the following API: Weather. The API queries must adhere to the following structure: {"location" : string, "days" : integer}

Query: What is the temperature trend in Paris, France for the next 5 days?

Reply: {"location": "Paris, France", "days": 5}

Ours

Query: What is the temperature trend in Paris, France for the next 5 days?

Reply: As a language model, I cannot solve this problem by myself and require the assistance of external tools. I choose the Weather API. The calling format is {"tool": "Weather API", "input": {"location": "Paris, France", "days": 5}}

Reformat

Efficient Dataset Construction

Dynamic Rehearsal for Scalability

 C_{new} : categories of newly introduced tool

*C*_{old} : categories of tools already learned

t : the current training epochs

 $\alpha(t)$: the proportion of sampling from old tools in training dataset at epoch t

$$\alpha(t) = \min\left(\frac{C_{old}}{C_{new} + C_{old}}, \gamma \cdot t\right)$$

 γ : The hyperparameter that controls the increment of $\alpha(t)$ each epoch until it equals to $\frac{C_{old}}{C_{new}+C_{old}}$

Tool Statistics

Туре	Domain	Task	API		
Solvable	NLP	Translation Sentiment Analysis Story Generation Summarization Grammar Correction	Language model itself		
	Reason	Math	Wolfram Alpha		
		Entertainment			
		Education			
		Culture and art	Bing Search		
Vorifiable	Fact	Politics			
veriliable	Faci	Sports			
			Get route		
		Мар	Get coordinates		
			Get distance		
			Search nearby		
		Recent Paper	Arxiv		
	Time	Stock	Get daily prices		
			Get exchange rate		
			Get open into		
			Get weather today		
			Forecast Weather		
			Detect the Civen Object		
		Image Understanding	Answer Question About The Image		
Unsolvable Mutimoda			Segment the given object		
			Bomovo Somothing From The Photo		
			Generate Image Condition On Text		
	Mutimodal	Image Generation	Generate Image Condition On Normal Map		
	Matinoda		Generate Image Condition On Pose Image		
			Generate Image Condition On Depth		
			Generate Image Condition On Sketch Image		
			Generate Image Condition On Segmentations		
			Generate Image Condition On Soft Hed Boundary Image		
			Generate Image Condition On Canny Image		

For each API, 800 for training, 100 for validation, and 100 for testing

Baseline && Evaluation

We chose Alpaca 7B as our base model to training on the dataset.

Baseline: Alpaca, Vicuna, Llama2Chat, GPT-3.5 and GPT-4.

We employ accuracy to evaluate the four aspects : Whether, Which, How and Success.

Result

Model	Whether	Which	How	Success
Alpaca	18.9	10.3	9.3	7.5
Vicuna	45.8	22.3	15.6	13.9
Llama2Chat	56.9	29.7	25.2	23.3
GPT-3.5	72.8	69.9	65.5	62.8
GPT-4	89.7	86.5	82.3	80.4
Ours	98.6	97.6	92.3	91.2

Table 3: Accuracy of 6 models across four critical aspects.

Result

Figure 4: The performance of different models on various APIs.

Bad case analysis: 1. Overconfidence. 2. Disregard.

Dynamic Rehearsal for Scalability

Strategy	New APIs	Old APIs
without Replay	91.6	84.7
with Replay	91.1	90.88

Table 4: The success rate under the scenario of continual learning

Ablation

Method	How	Success
Ours	92.3	91.2
w/o Whether	78.7	75.4
w/o Which	66.4	62.0
w/o Whether+Which	55.6	52.9

Table 5:An in-depth ablation on the Unified Conditional Probability Decomposition

Conclusion

- Unified conditional probability decomposition
- Reformat for **Efficient** dataset construction
- Dynamic rehearsal strategy for **Scalability**

Thank you