

Improving Chinese Named Entity Recognition with Multi-grained Words and Part-of-Speech Tags via Joint Modeling

Chenhui Dou¹, Chen Gong^{1*}, Zhenghua Li¹, Zhefeng Wang², Baoxing Huai², Min Zhang¹

 ¹Institute of Artificial Intelligence, School of Computer Science and Technology, Soochow University, China, ²Huawei Cloud, China
 ¹20215227026@stu.suda.edu.cn ¹{gongchen18, zhli13, minzhang}@suda.edu.cn ²{wangzhefeng, huaibaoxing}@huawei.com

LREC-COLING 2024

CNER (Chinese Named Entity Recognition):

Recognizing the entities with specific meanings in Chinese text.

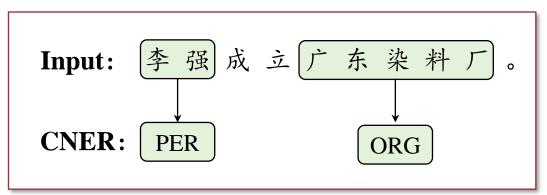


Figure 1: An example sentence with its CNER result: "李强(Li Qiang) 成立(sets up)广东(Kwangtung)染料(Dyestuff)厂(Plant)."

- In Chinese, word information plays a very important role in NER. However, the integration of CNER and word information through previous methods is indirect and shallow.
- Existing methods usually only consider single-grained word segmentation.

• Unified MWS-POS-NER representation and data

- Jointly modeling MWS-POS-NER with a two-stage parsing
- Extensive experiments and in-depth analysis

Representing MWS, POS, and NER in a unified manner by constructing the MWS-POS-

NER tree structure.

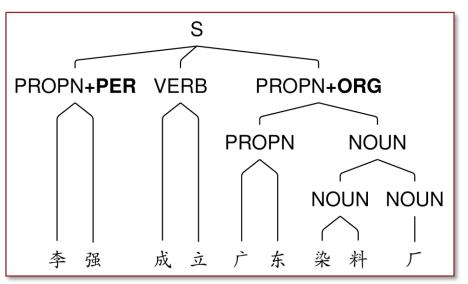


Figure 2: An example sentence of its Chinese MWS-POS-NER tree.

Data Construction

Step 1: Generating MWS tree with POS tags.

- I. Training two conversion models.
- II. Converting to PPD-side and MSR-side WS&POS results.
- III. Representing the three different WS&POS results in the MWS-POS tree.

Step2: Attaching NE labels to MWS-POS tree.

- Attaching an extra NE label to its corresponding word non-terminal.
- Adding a new non-terminal node for the corresponding entity.

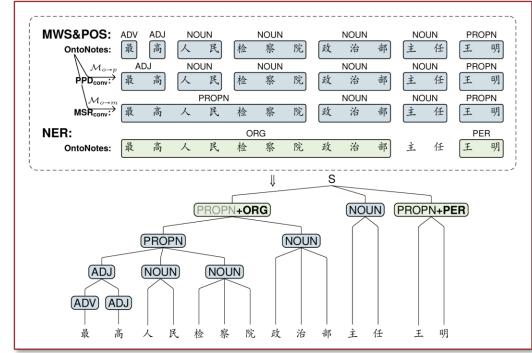


Figure 3: An example of how a MWS-POS-NER tree is generated.

LREC-COLING 2024

Two-stage Parsing Framework

First-stage: Predicting MWS tree with POS tags.

$$s(\boldsymbol{x}, \boldsymbol{y}) = \sum_{\substack{(i, j, t) \in \boldsymbol{y} \\ \boldsymbol{y}}} s(i, j, t)$$

 $\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} s(\boldsymbol{x}, \boldsymbol{y})$

Second-stage: Recognizing named entities.

$$\hat{l} = \arg \max_{l \in \mathcal{N}} s(i, j, l)$$

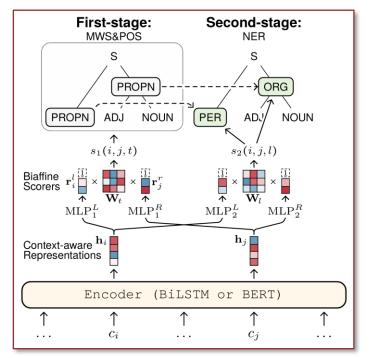


Figure 4: The architecture of the two-stage joint parsing framework.

Model Architecture

Inputs: Character embedding

 $\mathbf{e}_i = \mathbf{emb}(c_i)$

Encoder: Three layers BiLSTM or BERT

Boundary representation: Two separate MLPs \mathbf{r}_{i}^{L} ; $\mathbf{r}_{i}^{R} = \mathbf{MLP}^{L}(\mathbf{h}_{i})$; $\mathbf{MLP}^{R}(\mathbf{h}_{i})$

Biaffine Scorer:

$$s(i,j,t) = \begin{bmatrix} \mathbf{r}_i^L \\ 1 \end{bmatrix}^{\mathrm{T}} \mathbf{W}_t \begin{bmatrix} \mathbf{r}_j^R \\ 1 \end{bmatrix}$$

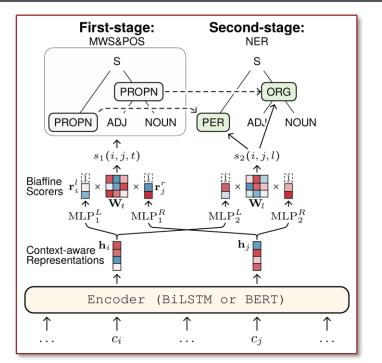


Figure 4: The architecture of the two-stage joint parsing framework.

First-stage: TreeCRF Loss

$$\mathcal{L}^{1st}(\boldsymbol{x}, \boldsymbol{y^*}) = -\log p(\boldsymbol{y^*}|\boldsymbol{x})$$
$$p(\boldsymbol{y^*}|\boldsymbol{x}) = \frac{e^{s(\boldsymbol{x}, \boldsymbol{y^*})}}{Z(\boldsymbol{x}) \equiv \sum_{\boldsymbol{y'} \in \mathcal{T}(\boldsymbol{x})} e^{s(\boldsymbol{x}, \boldsymbol{y'})}}$$

Second-stage: Cross Entropy Loss

$$\mathcal{L}^{2nd}(\boldsymbol{x}, \boldsymbol{z^*}) = \sum_{(i,j,l) \in \boldsymbol{z^*}} -\log \frac{e^{s(i,j,l)}}{\sum_{l'} e^{s(i,j,l')}}$$

Overall training loss

$$\mathcal{L}(oldsymbol{x},oldsymbol{y}^{*},oldsymbol{z}^{*})$$
 = $\mathcal{L}^{1st}\left(oldsymbol{x},oldsymbol{y}^{*}
ight)$ + $\mathcal{L}^{2nd}(oldsymbol{x},oldsymbol{z}^{*})$

Ontonotes4 & Ontonotes5

Datasets	Туре	Train	Dev	Test
OntoNotes4	#Sent.	15,724	4,301	4,346
	#Entity	13,372	6,950	7,684
OntoNotes5	#Sent.	36,487	6,083	4,472
	#Entity	62,543	9,104	7,494

Table 1: Numbers of sentences and entities in OntoNotes4 and OntoNotes5 datasets.

	С	OntoNotes4-Dev		OntoNotes5-Dev			
Model	Р	R	F1	Р	R	F1	Sent/s
Char-based Joint model	72.77 75.86	64.64 66.21	$\begin{array}{c} 68.42_{\pm 0.25} \\ \textbf{70.70}_{\pm 0.29} \end{array}$	72.90 77.50	69.53 71.22	$71.17_{\pm 0.11} \\ \textbf{74.22}_{\pm 0.03}$	393 349
Char-based w/ lexicon Joint model w/ lexicon	74.63 76.07	72.72 72.37	73.65 _{±0.19} 74.18 _{±0.12}	74.25 78.83	74.39 73.59	$74.32_{\pm 0.20} \\ \textbf{76.12}_{\pm 0.12}$	136 131
Char-based w/ BERT Joint model w/ BERT	78.96 80.39	80.18 80.44	79.55 _{±0.11} 80.41 _{±0.21}	75.86 78.83	78.19 77.41	$77.01_{\pm 0.07} \\ \textbf{78.09}_{\pm 0.16}$	204 179

Table 2: Development results on OntoNotes4 and OntoNotes5 datasets.

After introducing lexicon information or BERT encoder, the performance of the Joint model is superior to the 'Char-based' Baseline on both datasets.

Model	F1
OntoNotes4	
Lattice LSTM (Zhang and Yang, 2018)	73.88
LR-CNN (Gui et al., 2019)	74.45
WC-LSTM (Liu et al., 2019)	74.43
PLTE [†] (Xue et al., 2020)	80.60
FLAT [†] (Li et al., 2020)	81.82
SoftLexicon [†] (Ma et al., 2020)	82.81
LEBERT [†] (Liu et al., 2021)	82.08
MECT [†] (Wu et al., 2021)	82.57
ATSSA [†] (Hu et al., 2022a)	83.31
ACT-S [†] (Ning et al., 2022)	83.91
W ² NER [†] (Li et al., 2022)	83.08
Joint model [†]	82.82
OntoNotes5	
WC-LSTM (Liu et al., 2019)	75.95
DGLSTM-CRF (Jie and Lu, 2019)	77.40
FLAT [†] (Li et al., 2020)	77.87
SoftLexicon [†] (Ma et al., 2020)	79.71
LEBERT [†] (Liu et al., 2021)	78.30
W^2NER^{\dagger} (Li et al., 2022)	79.04
Joint model [†]	79.87

- Joint model achieves comparable performance with other latest models on OntoNotes4.
- Joint model achieves state-of-the-art results on OntoNotes5.

Table 3: Comparison with previous works.

Model	OntoNotes4 OntoNotes5			
NER as sequence labeling				
Char-based Word-based (orig.)	$81.70_{\pm 0.28} \\ 79.28_{\pm 0.17}$	$78.30_{\pm 0.16} \\ 78.14_{\pm 0.11}$		
Joint NER w/ WS as tree parsing				
+SWS (orig.) +SWS (fine) +SWS (coarse) +MWS	$\begin{array}{c} 81.82_{\pm 0.17} \\ 81.96_{\pm 0.32} \\ 82.04_{\pm 0.23} \\ \textbf{82.11}_{\pm 0.16} \end{array}$	$\begin{array}{c} 79.34_{\pm 0.39} \\ 79.29_{\pm 0.29} \\ 79.50_{\pm 0.05} \\ \textbf{79.58}_{\pm 0.20} \end{array}$		
Joint NER w/ WS&POS as tree parsing				
+SWS (orig.)&POS +SWS (fine)&POS +SWS (coarse)&POS +MWS&POS w/o PROPN constraint merge POS&NE label	$\begin{array}{c} 82.20_{\pm 0.05} \\ 81.97_{\pm 0.19} \\ 82.43_{\pm 0.24} \\ \textbf{82.82}_{\pm 0.07} \\ 82.55_{\pm 0.06} \\ 81.91_{\pm 0.58} \end{array}$	$\begin{array}{c} 79.69_{\pm 0.14} \\ 79.64_{\pm 0.25} \\ 79.84_{\pm 0.41} \\ \textbf{79.87}_{\pm 0.20} \\ 79.82_{\pm 0.12} \\ 79.52_{\pm 0.29} \end{array}$		

Table 4: Ablation studies on models with BERT.

- Joint framework is better than pipeline framework.
- MWS is better than SWS. Coarse SWS is the best among SWS.
- POS is further helpful for CNER.
- PROPN constraint and distinguishing label space are effective.

Model	OntoNotes4 OntoNotes5			
NER as sequence labeling				
Char-based Word-based (orig.)	$\begin{array}{c} 81.70_{\pm 0.28} \\ 79.28_{\pm 0.17} \end{array}$	$78.30_{\pm 0.16} \\ 78.14_{\pm 0.11}$		
Joint NER w/ WS as tree parsing				
+SWS (orig.) +SWS (fine) +SWS (coarse) +MWS	$\begin{array}{c} 81.82_{\pm 0.17} \\ 81.96_{\pm 0.32} \\ 82.04_{\pm 0.23} \\ \textbf{82.11}_{\pm 0.16} \end{array}$	$\begin{array}{c} 79.34_{\pm 0.39} \\ 79.29_{\pm 0.29} \\ 79.50_{\pm 0.05} \\ \textbf{79.58}_{\pm 0.20} \end{array}$		
Joint NER w/ WS&POS as tree parsing				
+SWS (orig.)&POS +SWS (fine)&POS +SWS (coarse)&POS +MWS&POS w/o PROPN constraint merge POS&NE label	$\begin{array}{c} 82.20_{\pm 0.05} \\ 81.97_{\pm 0.19} \\ 82.43_{\pm 0.24} \\ \textbf{82.82}_{\pm 0.07} \\ 82.55_{\pm 0.06} \\ 81.91_{\pm 0.58} \end{array}$	$\begin{array}{c} 79.69_{\pm 0.14} \\ 79.64_{\pm 0.25} \\ 79.84_{\pm 0.41} \\ \textbf{79.87}_{\pm 0.20} \\ 79.82_{\pm 0.12} \\ 79.52_{\pm 0.29} \end{array}$		

Table 4: Ablation studies on models with BERT.

- Joint framework is better than pipeline framework.
- MWS is better than SWS. Coarse SWS is the best among SWS.
- POS is further helpful for CNER.
- PROPN constraint and distinguishing label space are effective.

Model	OntoNotes4 OntoNotes5			
NER as sequence labeling				
Char-based Word-based (orig.)	$\begin{array}{c} 81.70_{\pm 0.28} \\ 79.28_{\pm 0.17} \end{array}$	$78.30_{\pm 0.16} \\ 78.14_{\pm 0.11}$		
Joint NER w/ WS as tree parsing				
+SWS (orig.) +SWS (fine) +SWS (coarse) +MWS	$\begin{array}{c} 81.82_{\pm 0.17} \\ 81.96_{\pm 0.32} \\ 82.04_{\pm 0.23} \\ \textbf{82.11}_{\pm 0.16} \end{array}$	$\begin{array}{c} 79.34_{\pm 0.39} \\ 79.29_{\pm 0.29} \\ 79.50_{\pm 0.05} \\ \textbf{79.58}_{\pm 0.20} \end{array}$		
Joint NER w/ WS&POS as tree parsing				
+SWS (orig.)&POS +SWS (fine)&POS +SWS (coarse)&POS +MWS&POS w/o PROPN constraint merge POS&NE label	$\begin{array}{c} 82.20_{\pm 0.05} \\ 81.97_{\pm 0.19} \\ 82.43_{\pm 0.24} \\ \textbf{82.82}_{\pm 0.07} \\ 82.55_{\pm 0.06} \\ 81.91_{\pm 0.58} \end{array}$	$\begin{array}{c} 79.69_{\pm 0.14} \\ 79.64_{\pm 0.25} \\ 79.84_{\pm 0.41} \\ \textbf{79.87}_{\pm 0.20} \\ 79.82_{\pm 0.12} \\ 79.52_{\pm 0.29} \end{array}$		

Table 4: Ablation studies on models with BERT.

- Joint framework is better than pipeline framework.
- MWS is better than SWS. Coarse SWS is the best among SWS.
- POS is further helpful for CNER.
- PROPN constraint and distinguishing label space are effective.

Thanks for your time!

Questions?

LREC-COLING 2024