

Improving Role-Oriented Dialogue Summarization with Interaction-Aware Contrastive Learning

Weihong Guan, Shi Feng, Daling Wang, Faliang Huang, Yifei Zhang, Yuan Cui Northeastern University, Shenyang, China LREC-COLING 2024, **Torino**

- In many real life dialogue scenarios, each speaker has an official role (e.g. user or agent) acting for corresponding responsibility.
- Each role has its own view and goal. It is possible and important to summarize the main content of each role.
- Lin et al. (2021) proposed the role-oriented dialogue summarization task and construct a related-dataset CSDS based on Chinese customer service dialogues.

Dialogue 0 A: 有什么可以帮助您的吗。(Is there anything I can help with?) 1 Q: 我购买的商品可以更換地址吗? (Can I change the address of the goods I purchased?) 2 A: 下单之后是改不了的呢。(It cannot be changed after placing the order.) 3 Q: 那我取消吧。(Then I'll cancel.) 2 A: 是哪个订单的呢。(Which order is it?) 3 Q: [订单编号]。([Order Number]) 6 Q: 我已经取消了。(I have canceled.) 7 A: 全部取消吗? 您只取消了一部分呢(Cancel all? You only canceled a part of it.) 8 Q: 请全部取消,其他的显示关联订单无法取消。(Please cancel all of it. Other parts	User Summary Agent Summary	用户询问购买的商品能否更换地址。用户布望客服帮助取消全部订单。(The user asked whether the address of the purchased product could be changed. The user wants the agent to help cancel all orders.) 客服回答用户修改地址即可。客服回答如果取消订单用的券可以退回。(The agent replied that the user can modify the address. The agent replied that coupons used can be returned if the order is canceled.) 用户询问购买的商品能否更换地址。客服表示下单后
 8 A: 好的,您稍等。这个订单是三方商家的,需要商家审核一下。(Okay, just a moment. This order is from a third-party merchant and needs to be reviewed by the merchant.) 9 Q: 好的。(Ok.) 10 A: 请问还有其他需要帮忙的吗。(Is there anything else you need help with?) 10 Q: 没有了,谢谢。(That is all, thanks.) 	Final Summary	不可以。用户希望客服帮助取消全部订单。客服表示 需要商家审核。(The user asks whether the address of the purchased product could be changed. The agent says it was not possible after placing the order. The user wants the agent to help cancel all orders. The agent says it needs to be reviewed by the merchant.)
11 A: 感谢您的支持, 再见。(Thank you for your support, goodbye.)	Interac role-or	tion between different roles is crucial for the iented dialogue summarization.
	Interscat	raction can help track the key information tered across different roles

Interaction can help understand the main content of each role

- Existing methods do not build mechanisms for the encoder to understand interaction patterns between different roles.
- The encoder can not fully comprehend the role-level interaction from the flat-concatenated utterances, thus the summarization model are prone to ignore vital interaction clues in dialogue and generate inaccurate summaries.
- We propose a Contrastive Learning based Interaction-Aware Model (CIAM) for the roleoriented dialogue summarization task.

Our Contributions:

- We propose an interaction aware contrastive learning method, which could help the model capture interaction patterns between different roles
- We employ decoder start tokens to control what kind of summary to generate which could generate different summaries with a unified model and can utilize the relatedness between different role's summaries.
- Our method can be applied to different seq2seq models and can outperform previous SOTA models and powerful LLMs on two public datasets CSDS and MC.

Task Formulation :

Source: A dialogue *D* containing *m* utterances $\{u_1, ..., u_m\}$ and *p* roles $R = \{r_1, ..., r_p\}$

. By concatenating all the utterances and related speaker roles, we obtain the final input $\{x_1, \dots, x_n\}$.

Target: A summary for each role: y^{user} , y^{agent} and a summary for the whole dialogue y^{final}

All public datasets for this task have two roles, one asking questions (user, patient) and one answering questions (agent, doctor).

Encoder:

 $\{h_1, ..., h_n\} = \text{Encoder}(\{x_1, ..., x_n\})$

Role-Oriented Decoder:

employ different decoder start tokens to control what kind of summary to generate $-\sum_{i=1}^{T} \log P(y_i \mid y_{\le i}, bos, X)$

7

Self-Representations

 $H^{u} = H \odot m^{u},$ $H^{a} = H \odot m^{a},$

Cross-Representations

$$A_{u2a} = \operatorname{softmax} \left(\frac{H^u (H^a)^T}{\sqrt{d}} + M_{u2a} \right)$$
$$A_{a2u} = \operatorname{softmax} \left(\frac{H^a (H^u)^T}{\sqrt{d}} + M_{a2u} \right)$$

 $C^{u} = (A_{u2a} \odot m^{u})H^{a}$ $C^{a} = (A_{a2u} \odot m^{a})H^{u}$

Interaction-Aware Representations

$$\begin{array}{ll} \stackrel{\sim}{H}{}^{u} &= (H^{u} \oplus C^{u})W^{u}, \\ \stackrel{\sim}{H}{}^{a} &= (H^{a} \oplus C^{a})W^{a}, \end{array}$$

Positive Sample: The original dialogue D

Negative Samples: destroying interactions between different roles in dialogue

- \succ Keep all utterances of the user and mask all utterances of the agent.
- > Then randomly select a different dialogue D and sample a consecutive of utterances of the agent in D to fill the masked utterances of D. Repeat the process until all the masked utterances in D has been filled.
- \succ Repeat this operation multiple times and generate *K* negative samples.
- ▷ Keep all utterances of the agent and replace all utterances of the user, obtaining another *K* negative samples. Finally, obtain 2K+1 samples, the first sample is the positive sample
- > We generate H_i^u , H_i^a , H_i^u , H_i^a for the *i*-th sample.

InfoNCE Loss

$$\mathcal{L}_{user} = -\log \frac{e^{sim(H_1^u, \tilde{H}_1^u)/\tau}}{\sum_{j=1}^{(2K+1)} e^{sim(H_j^u, \tilde{H}_j^u)/\tau}},$$
$$\mathcal{L}_{agent} = -\log \frac{e^{sim(H_1^a, \tilde{H}_1^a)/\tau}}{\sum_{j=1}^{(2K+1)} e^{sim(H_j^a, \tilde{H}_j^a)/\tau}},$$
$$\mathcal{L}_{con} = \mathcal{L}_{user} + \mathcal{L}_{agent}.$$

Total Loss

 $\mathcal{L} = \mathcal{L}_{nll} + \gamma \mathcal{L}_{con}$

4-Experiments

Dataset:

CSDS: Customer Service MC: Medical Inquiry

Baselines:

- **BERTAbs** and **BART** (Lewis et al., 2020)
- **BERT-CIAM** and **BART-CIAM**
- BERT-both and BART-both: assign each role a specific decoder and employ two attentions to model interaction between roles
- BERT-RAC and BART-RAC: employ a discrete role prompt to control model for different summaries, and employ a centrality model to capture salient utterances
- BERT-GLC and BART-GLC: employ global-to-local centrality scores to capture sub topics on the basis of RAC

CSDS	ROUGE-1	ROUGE-2	ROUGE-L	BERTScore
BERT	55.41/52.71/49.61	39.42/36.39/33.88	53.41/50.45/46.88	78.52/79.23/76.39
BERT-Both	57.24/57.36/51.92	40.12/40.70/36.37	54.87/55.17/49.52	79.85/80.70/77.23
BERT-RAC	57.35/57.75/52.23	40.34/41.05/36.75	55.12/55.53/49.89	79.89/80.69/77.27
BERT-GLC	57.59/58.14/52.34	41.28 /41.84/36.48	55.74 /55.86/50.16	79.89/80.71/77.28
BERT-CIAM	57.66/58.73/52.55	41.12/ 42.01/36.92	55.51/ 56.72/50.20	79.90/81.25/77.39
w/o IACL	56.24/57.20/51.21	40.28/40.92/36.09	54.38/55.29/49.16	79.61/80.89/76.79
BART	58.66/60.35/54.13	43.35/45.09/39.37	56.60/58.13/51.18	79.54/81.14/77.31
BART-Both	59.21/60.53/54.22	43.88/45.39/39.96	57.32/58.28/51.90	79.74/81.37/77.41
BART-RAC	59.86/61.67/54.83	44.42/46.14/40.29	57.86/59.45/52.43	79.97/81.92/77.60
BART-GLC	60.07/61.72/54.82	44.55/46.21/40.11	58.06/59.51/52.46	80.10 /81.90/77.61
BART-CIAM	60.27/62.21/55.04	44.63/46.35/40.46	58.20/59.88/52.69	80.01/82.03/77.63
w/oIACL	$\overline{59.39}/\overline{61.69}/\overline{54.68}$	$\overline{43.85/46.13/40.12}$	$\overline{57.34}/\overline{59.37}/\overline{52.39}$	79.77/81.88/77.58

Ablation Study:

w/o IACL: without interaction-aware contrastive learning

MC	ROUGE-1	ROUGE-2	ROUGE-L	BERTScore
BERT	84.07/95.13/81.66	79.90/94.50/76.73	83.04/95.08/80.42	92.68/97.86/91.71
BERT-Both	84.69/95.19/82.11	80.76/94.63/77.49	83.68/95.14/80.92	93.02/97.90/91.91
BERT-RAC	85.12/95.50/82.62	81.30/94.80/77.91	84.07/95.72/81.36	93.11/97.89/92.29
BERT-GLC	85.64/95.49/82.87	81.44/94.97/78.05	84.16/96.10/81.57	93.15/97.92/ 92.36
BERT-CIAM	85.87/95.96/83.04	81.82/94.98/78.53	84.62/96.11/81.69	93.39/98.16 /92.14
w/olACL	84.83/95.20/82.25	80.93/94.59/77.63	$\overline{84.02}/\overline{95.21}/\overline{80.96}$	$\overline{93.05}/\overline{97.88}/\overline{91.95}$
BART	88.37/95.42/86.33	84.75/94.99/82.33	87.38/95.37/85.30	93.65/97.94/92.63
BART-Both	88.52/95.63/87.06	85.22/95.42/82.89	87.55/95.96/85.79	93.72/97.89/92.67
BART-RAC	89.43/96.78/88.21	86.29/95.86/84.58	88.47/96.12/86.56	94.01/98.13/92.84
BART-GLC	89.55/96.84/88.47	86.47/96.14/ 84.62	88.56/96.23/86.77	94.17/98.25/ 92.96
BART-CIAM	89.85/96.86/88.73	86.93/96.31 /84.56	88.83/96.74/86.84	94.26/98.55 /92.90
w/o IACL	88.87/96.23/87.95	85.78/95.84/83.71	87.96/96.10/86.14	$\overline{93.89/98.06/92.78}$

4-Experiment

Comparasion with LLMs

ChatGPT (gpt-3.5-turbo-0613) and GPT4 (gpt-4-0613) 给定一段中文客服对话,请分别生成用户视角的摘要,客服视角的摘要和整段对话的总体摘要。(Given a Chinese customer service dialogue, please generate a summary for the user, a summary for the agent, and an overall summary for the whole

CSDS	ROUGE-1	ROUGE-2	ROUGE-L	BERTScore	our examples:)
BART-CIAM	60.27/62.21/55.04	44.63/46.35/40.46	58.20/59.88/52.69	80.01/82.03/77.63	
ChatGPT	51.96/48.85/46.21	33.89/31.76/28.56	48.25/44.98/42.25	75.46/76.74/73.90	
GPT4	53.04/49.78/47.97	35.10/32.98/30.97	49.72/46.32/43.98	77.12/77.15/75.10	
			{ User Summary 客服摘要: (Age { Agent Summary 总体摘要: (Ove { Final Summary 请为下面的测试 (Please generate t summary for the f 对话: (Dialogue { Dialogue } 用户摘要: (User 客服摘要: (Age 总体摘要: (Ove	<pre>>unmary:) } ent Summary:) / rall Summary:) } 对话生成用户摘要, he user summary, the following test dialogu :) r Summary:) ent Summary:) rall Summary:)</pre>	客服摘要和总体摘要。 agent summary, the overall e:)

4-Experiment

Human Evaluation

Score (0,1,2):

- Informativeness: whether the generated summary could correctly contain the key information
- Conciseness: whether the generated summary could avoid redundant and unnecessary information

Human Preference:

Ask evaluators to select a best summary or several best summaries from the generated summaries of different models

CSDS	Informativeness	Conciseness	Human Preference
GPT4	1.45/1.38/1.34	1.29/1.16/1.19	0.40/0.30/0.29
BART	1.52/1.48/1.42	1.10/1.18/1.16	0.19/0.38/0.31
BART-GLC	1.48/1.44/1.45	1.43/1.46/1.53	0.45/0.45/0.40
BART-CIAM	1.59/1.51/1.53	1.54/1.58/1.56	0.57/0.56/0.53

