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• The summarization has achieved tremendous success in 
natural language processing (NLP) tasks.

• Automating abstract generation encounters challenges due 
to domain-specific concepts and terminology.

Introduction

Related works

Cohan et al. (2018) Xiao and Carenini (2019)
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Background & Challenges
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 Domain-Specific: Scientific terminology complicates comprehension.
 Capturing Complexity: Extracting the problem, methods, and 

conclusions from the entire text.

 Generalization: Transferring knowledge to unseen domains.
 Training Cost: Data, time, and compute-intensive training.

Discussion
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The Rise of Large Language Models (LLMs)
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GPT Llama

ChatGLM InternLM CoT (Wei et 
al., 2022b)

ToT (Yao et al., 2023) GoT (Besta et al., 2023)

 Few-Shot Learning: Adapting output by examples.
 Prompt Engineering: Mitigating hallucinations via CoT and combining 

contents through DoT.

Discussion
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 Enhancing abstract effectiveness
 Reducing prompt costs

Objectives
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"""Please generate the abstract of the article based 
on the following information <origin> of the object 
article.

If there are references for the article, the title 
and abstract of the reference will also be listed in 
<reference>. 

Minimizing redundancy and retaining valid 
information as much as possible. 

Only the summaries generated between tags 
<Abstract> and </Abstract> are output, and no other 
text is output.
<origin>

{origin}
</origin>

{reference}
"""

Genprompt =

"""
<title>

{title}
</title>
<Introduction>

{introduction}
</Introduction>
<Other Section>

{other 
section}
</Other 
Section>
"""

Originprompt =

"""
<Reference>

<title>
{reference title}

</title>
<Abstract>

{reference 
abstract}

</Abstract>
</Reference>
"""

Referenceprompt =

Prompt Text

Basic Information

1 2 3 4 5X [ , , , , ]x x x x x=
1 Original Titlex =

2 Original Introductionx =

3 Original Other Sectionx =

4 Reference Titlex =

5 Reference Abstractx =

Prompt Framework

1x {title}

2x
3x
4x
5x

{introduction}

{other section}

{reference title}

{reference abstract}

Originprompt {origin}

Referenceprompt {reference}

Gen Genprompt ( , prompt )f= X

Gen Gen Gen( , ) ~ ( | ( , prompt ))G p P fθ = Y Y X 

Problem Formalization

• 𝐺𝐺 = (𝑉𝑉,𝐸𝐸): reasoning
process, where 𝑉𝑉 -> nodes
𝐸𝐸 -> edges
• 𝑝𝑝𝜃𝜃: LLMs
• 𝐗𝐗: basic information
• promptGen: prompt text
• 𝑓𝑓Gen:  prompt framework
• 𝐘𝐘: model’s output

Prompt Framework
Discussion
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"""Please generate the abstract of the article based 
on the following information <origin> of the object 
article.

If there are references for the article, the title 
and abstract of the reference will also be listed in 
<reference>. 

Minimizing redundancy and retaining valid 
information as much as possible. 

Only the summaries generated between tags 
<Abstract> and </Abstract> are output, and no other 
text is output.
<origin>

{origin}
</origin>

{reference}
"""

Genprompt =

"""
<title>

{title}
</title>
<Introduction>

{introduction}
</Introduction>
<Other Section>

{other 
section}
</Other 
Section>
"""

Originprompt =

"""
<Reference>

<title>
{reference title}

</title>
<Abstract>

{reference 
abstract}

</Abstract>
</Reference>
"""

Referenceprompt =

Prompt Text

Basic Information

1 2 3 4 5X [ , , , , ]x x x x x=
1 Original Titlex =

2 Original Introductionx =

3 Original Other Sectionx =

4 Reference Titlex =

5 Reference Abstractx =

Prompt Framework

1x {title}

2x
3x
4x
5x

{introduction}

{other section}

{reference title}

{reference abstract}

Originprompt {origin}

Referenceprompt {reference}

Gen Genprompt ( , prompt )f= X

Gen Gen Gen( , ) ~ ( | ( , prompt ))G p P fθ = Y Y X 

Problem Formalization
Prompt Framework

Gen ( , )G pθ 
3 Types of Transformation

Agg ( , )G pθ  Impr ( , )G pθ | |

( , )p Sθε
Evaluator: ROUGE score

Discussion
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Two Types of Thresholds

Simple mean threshold
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Improve Score Distribution

Evaluate
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Training Process
Input

Training Process
Calculate Statistical characteristics of score 
distributions as thresholds for further processing.

Two Types of Thresholds

Gumbel threshold
( )/

( ; , )
xeF x e
µ β

µ β
− −−=CDF:

2
2 max

2

6σβ
π

= maxµ µ γβ= −where

ThreshGumbelThresh ln( ln )pµ β= − −

Discussion
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Reasoning Process

Dynamic Generate module
DG ( , , )G p Hθ 

Simple Gumbel[ , ]H H H=• Threshold function:
( , )p Sθε• Evaluator:

Dynamic Aggregate module
DA ( , , )G p Hθ 

Dynamic Improve module
DI ( , , )G p Hθ 

Ranking module
( , , )G p hθ -> Top ℎ answers

Discussion
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Main Experimental Result
Setup
• Datasets: PubMedCite Inductive (Luo et al., 2023)
• Model: ChatGLM2-6B

• Top 𝑝𝑝 = 0.7
• Temperature T = 0.7

• GPU: 24G 3090
• Prompt setting

• Input length: 20000
• Level: 𝐿𝐿 = 3
• Branching factor: 𝑘𝑘 = 3

Discussion
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Main Experimental Result
Compared with other prompt approaches

10/18

 Quality: DGoT achieves the highest 
LOUGE score.

 Cost: 43.7% to 56.4% cost-effectiveness  
compared to other multi-round query 
prompt approaches.

Discussion

Cost-effectiveness is defined as the cost required to 
improve the performance of a unit metric compared to a 
baseline method. 
Therefore, the smaller the cost-effectiveness, the better.
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Main Experimental Result
Effects of threshold function 𝐻𝐻 setting

11/18

 Increasing the threshold leads to 
higher Introduction R-1 scores.

 But Abstract ROUGE scores do 
not show a linear trend.

Discussion
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Discussion

Conclusion

 Introduced a Dynamic Graph of Thought (DGoT) prompt method, 
dynamically adjusting graph structure to minimize language model costs.

 Established a threshold-setting mechanism for the DGoT evaluation 
function to provide a reference for performance and cost trade-offs.

 Experimental results demonstrate that our approach achieves the best 
cost-effectiveness in scientific literature abstract generation compared 
to other multi-round prompt methods.
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Discussion

Appendix - Further studies
 Other Potential Influencing Factors on the Results

 Effect of Prompt Length

 Effect of Branching Factors

 Results under Optimal Prompt Length

 Prompt Framework for Transformations
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Discussion

Appendix - Further studies
Effect of Prompt Length
 Longer input is not necessarily better:
 truncating input may lose citation 

information.

Note: Experiment conducted on the first 100 training set data.

Performance of ChatGLM2

Performance of InternLM2
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Discussion

Appendix - Further studies
Effect of Prompt Length
 Models differ in performance:
 ChatGLM2 retains introduction 

information well, while InternLM2 excels 
in abstract generation.

Note: Experiment conducted on the first 100 training set data.

Performance of ChatGLM2

Performance of InternLM2
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Discussion

Appendix - Further studies
Effect of Branching Factors
 The ROUGE scores of introduction and 

abstract are in trade-off.
 As branching factor 𝑘𝑘 improves,
 Intro. R-1 scores improve,
 Abst. R-1 scores do not improve.

Note: Experiment conducted on the first 100 training set data, using InternLM2.
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Discussion

Appendix - Further studies
Effect of Branching Factors
 Improving scores through additional inquiries demonstrates marginal utility.
 The number of agents follows Scaling Laws.
 There are limits to the performance gains it can bring.

Note: Experiment conducted on the first 100 training set data, using InternLM2.
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Discussion

Appendix - Further studies
Results under Optimal Prompt Length
 The few-shot capability of large models has 

the potential to surpass the performance of 
previous best models †.

Note: Experiment conducted on the first 100 testing set data. The input lengths of 
ChatGLM2 and InterLM2 are 2048 and 4096, respectively.
† Best R-1 score on PubMedCite Inductive dataset is 41.62 (Luo et al., 2023)

Performance of ChatGLM2

Performance of InternLM2



Thanks!

Xinyu Ning, Yutong Zhao, Yitong Liu*, Hongwen Yang

{nxybupt, zhaoyutong, liuyitong, yanghong}@bupt.edu.cn

GitHub: https://github.com/JayceNing/DGoT

Contact us if you have Questions and advices!
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