LREC-COLING 2024

DGoT: Dynamic Graph of Thoughts for Scientific Abstract Generation

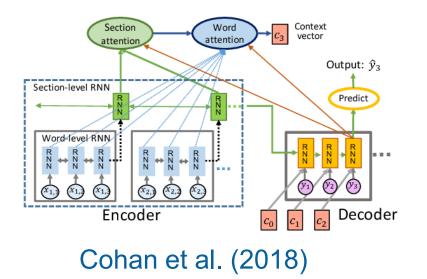
Xinyu Ning, Yutong Zhao, Yitong Liu*, Hongwen Yang

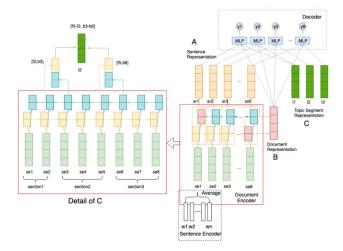
School of Information and Communication Engineering Beijing University of Posts and Telecommunications, China {nxybupt, zhaoyutong, liuyitong, yanghong}@bupt.edu.cn

Introduction

- The summarization has achieved tremendous success in natural language processing (NLP) tasks.
- Automating abstract generation encounters challenges due to domain-specific concepts and terminology.

Related works w/o citation information





Xiao and Carenini (2019)

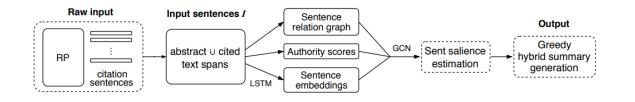
May 1, 2024

DGoT for Scientific Abstract Generation

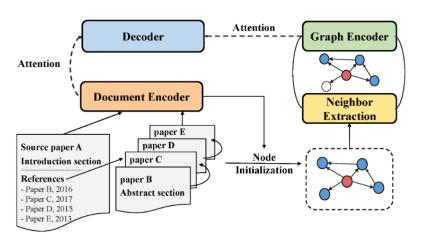
Introduction

- The summarization has achieved tremendous success in natural language processing (NLP) tasks.
- Automating abstract generation encounters challenges due to domain-specific concepts and terminology.

Related works w/ citation information



ScisumNet (Yasunaga et al., 2019)



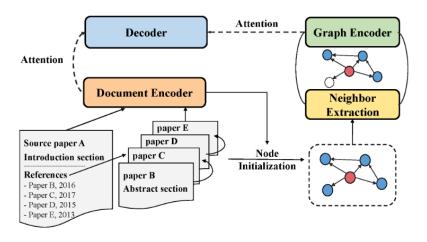
CGSum (An et al., 2021)

May 1, 2024

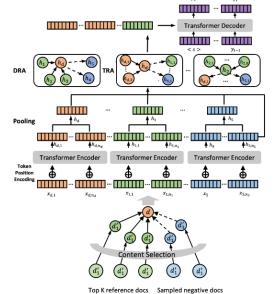
Introduction

- The summarization has achieved tremendous success in natural language processing (NLP) tasks.
- Automating abstract generation encounters challenges due to domain-specific concepts and terminology.

Related works w/ citation information



CGSum (An et al., 2021)



CitationSum (Luo et al., 2023)

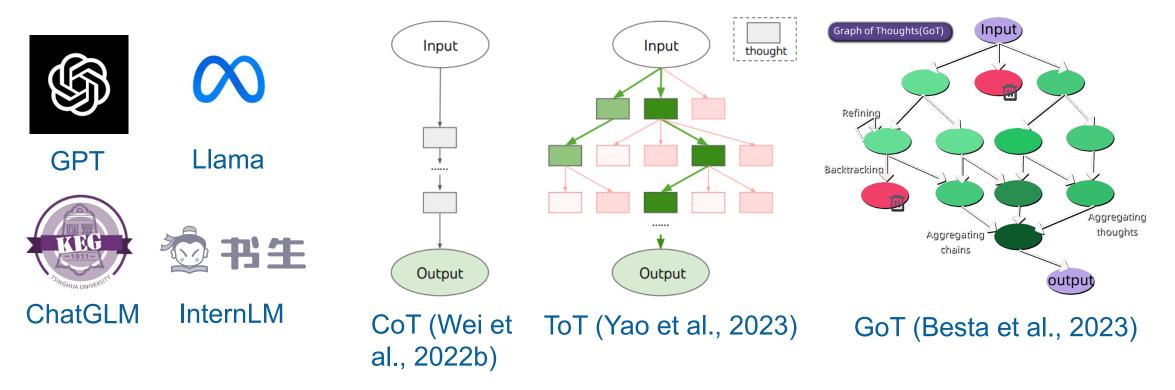
May 1, 2024

DGoT for Scientific Abstract Generation

Background & Challenges

- > **Domain-Specific:** Scientific terminology complicates comprehension.
- Capturing Complexity: Extracting the problem, methods, and conclusions from the entire text.
- **Generalization:** Transferring knowledge to unseen domains.
- **Training Cost:** Data, time, and compute-intensive training.

The Rise of Large Language Models (LLMs)



- Few-Shot Learning: Adapting output by examples.
- **Prompt Engineering:** Mitigating hallucinations via CoT and combining contents through DoT.

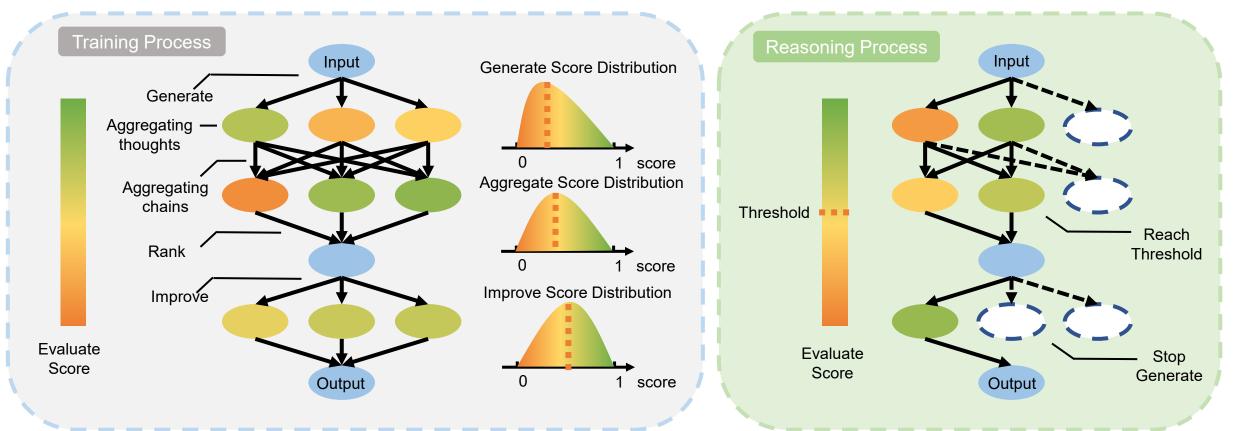
May 1, 2024

May 1, 2024

5/18

Dynamic Graph of Thoughts

- **Objectives** > Enhancing abstract effectiveness
 - Reducing prompt costs



Background

Methods

 χ_5

Discussion

Prompt Framework

Dynamic Graph of Thoughts

Problem Formalization

 $\mathcal{T}_{\text{Gen}}(G, p_{\theta}) = \mathbf{Y} \sim P(\mathbf{Y} \mid f_{\text{Gen}}(\mathbf{X}, \text{prompt_{Gen}}))$

- G = (V, E): reasoning process, where $V \rightarrow nodes$ $E \rightarrow edges$
- p_{θ} : LLMs

BUPT

- X: basic information
- prompt_{Gen}: prompt text
- f_{Gen} : prompt framework
- Y: model's output

Prompt	Tevt
Tiompt	ICAL

$prompt_{Gen} =$

"""Please generate the abstract of the article based on the following information <origin> of the object article.

If there are references for the article, the title and abstract of the reference will also be listed in <reference>.

Minimizing redundancy and retaining valid information as much as possible.

Only the summaries generated between tags <Abstract> and </Abstract> are output, and no other text is output.

<origin> {origin}

</origin>

{reference}

 $X = [x_1, x_2, x_3, x_4, x_5]$

 x_4 = Reference Title

 x_5 = Reference Abstract

 x_1 = Original Title

igin =

<title>

</title>

{title}

{other

section}

</Other

Section>

.....

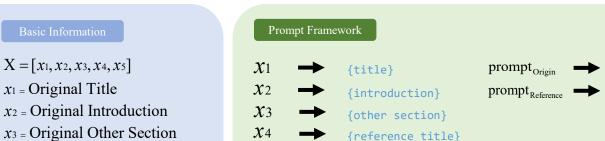
 $prompt_{Reference} =$

..... <Introduction> {introduction} </Introduction> <Other Section>

<Reference> <title> {reference title} </title> <Abstract> {reference abstract} </Abstract> </Reference>

{origin}

{reference}



 $prompt = f_{Gen}(\mathbf{X}, prompt_{Gen})$ {reference abstract}

May 1, 2024

Background

Methods

Discussion

Prompt Framework

Dynamic Graph of Thoughts

Problem Formalization

 $\mathcal{T}_{\text{Gen}}(G, p_{\theta}) = \mathbf{Y} \sim P(\mathbf{Y} \mid f_{\text{Gen}}(\mathbf{X}, \text{prompt_{Gen}}))$

3 Types of Transformation $\mathcal{T}_{\text{Gen}}(G, p_{\theta}) \mid \mathcal{T}_{\text{Agg}}(G, p_{\theta}) \mid \mathcal{T}_{\text{Impr}}(G, p_{\theta})$

Evaluator: ROUGE score $\varepsilon(p_{\theta},S)$

$prompt_{Gen} =$

"""Please generate the abstract of the article based on the following information <origin> of the object article.

If there are references for the article, the title and abstract of the reference will also be listed in <reference>.

Minimizing redundancy and retaining valid information as much as possible.

Only the summaries generated between tags <Abstract> and </Abstract> are output, and no other text is output.

<origin>

{origin} </origin>

{reference}

prompt_{Origin} =

<title>

</title>

{other

section}

</Other

Section>

.....

 $prompt_{Reference} =$

..... {title} <Introduction> {introduction} </Introduction> <Other Section>

<Reference> <title> {reference title} </title> <Abstract> {reference abstract} </Abstract> </Reference>

	Prom	pt Frame		
	X_1	→	{title}	prompt _{Origin}
	χ_2	→	{introduction}	prompt _{Reference}
ction	X 3	\rightarrow	{other section}	

 χ_4

 x_5

- {other section} {reference title}
 - $prompt = f_{Gen}(\mathbf{X}, prompt_{Gen})$ {reference abstract}

May 1, 2024

 $X = [x_1, x_2, x_3, x_4, x_5]$ x_1 = Original Title x_2 = Original Introduction x_3 = Original Other Section

 x_4 = Reference Title x_5 = Reference Abstract

BUPT

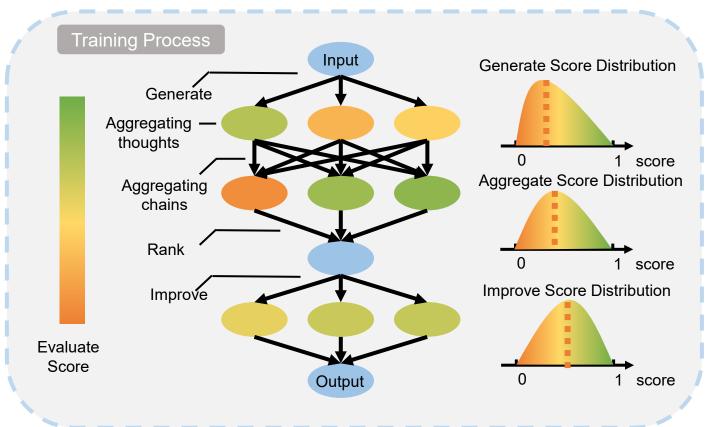
DGoT for Scientific Abstract Generation

{origin}

{reference}

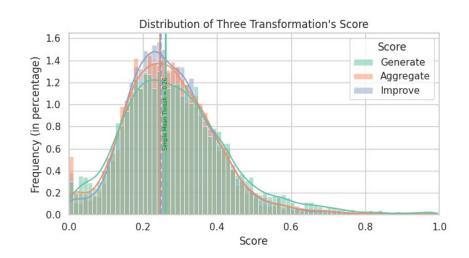
Dynamic Graph of Thoughts Training Process

Calculate Statistical characteristics of score distributions as **thresholds** for further processing.



Two Types of Thresholds

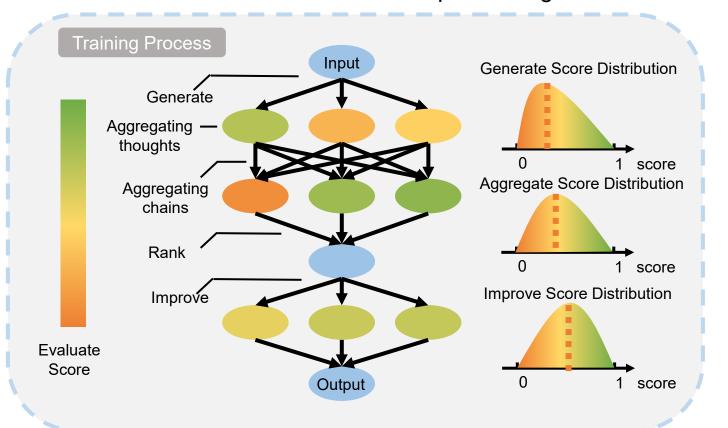
Simple mean threshold



Thresh simple = μ_{score}

Dynamic Graph of Thoughts Training Process

Calculate Statistical characteristics of score distributions as **thresholds** for further processing.



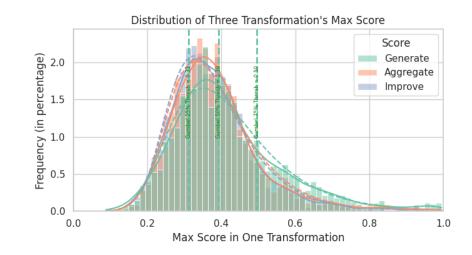
DGoT for Scientific Abstract Generation

Two Types of Thresholds

Gumbel threshold

CDF: $F(x; \mu, \beta) = e^{-e^{-(x-\mu)/\beta}}$ where $\beta^2 = \frac{6\sigma_{\max}^2}{\pi^2}$ $\mu = \mu_{\max} - \gamma\beta$

Thresh_{Gumbel} = $\mu - \beta \ln(-\ln p_{\text{Thresh}})$



May 1, 2024

Background

Dynamic Graph of Thoughts Reasoning Process

- Threshold function: $H = [H_{Simple}, H_{Gumbel}]$
- Evaluator: $\mathcal{E}(p_{\theta}, S)$

Dynamic Generate module

 $\mathcal{T}_{\mathrm{DG}}(G,p_{\theta},H)$

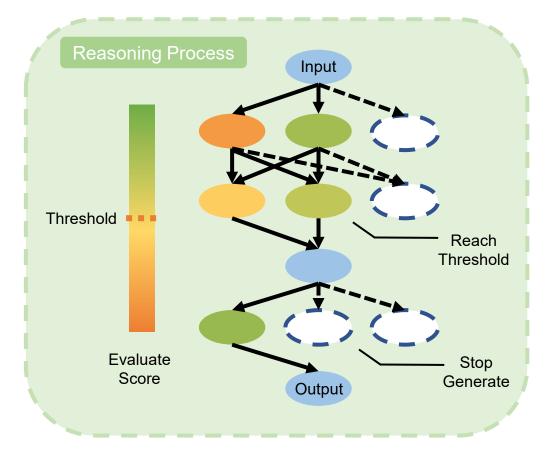
Dynamic Aggregate module $\mathcal{T}_{DA}(G, p_{\theta}, H)$

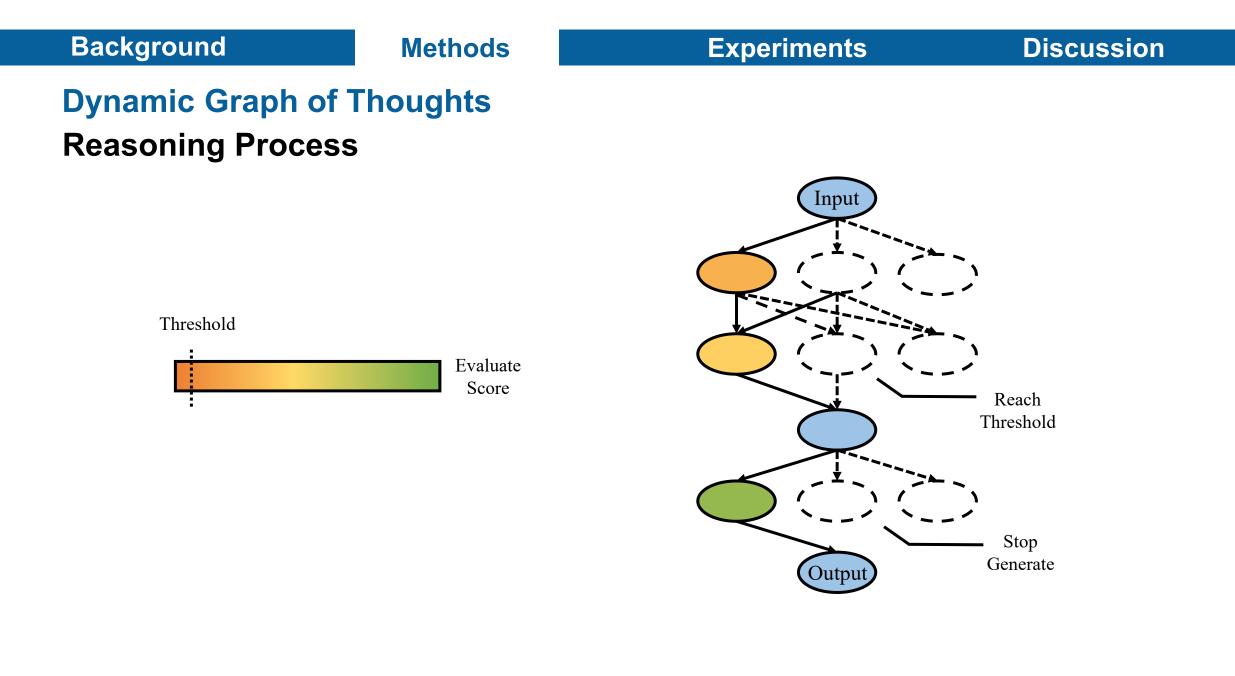
Dynamic Improve module

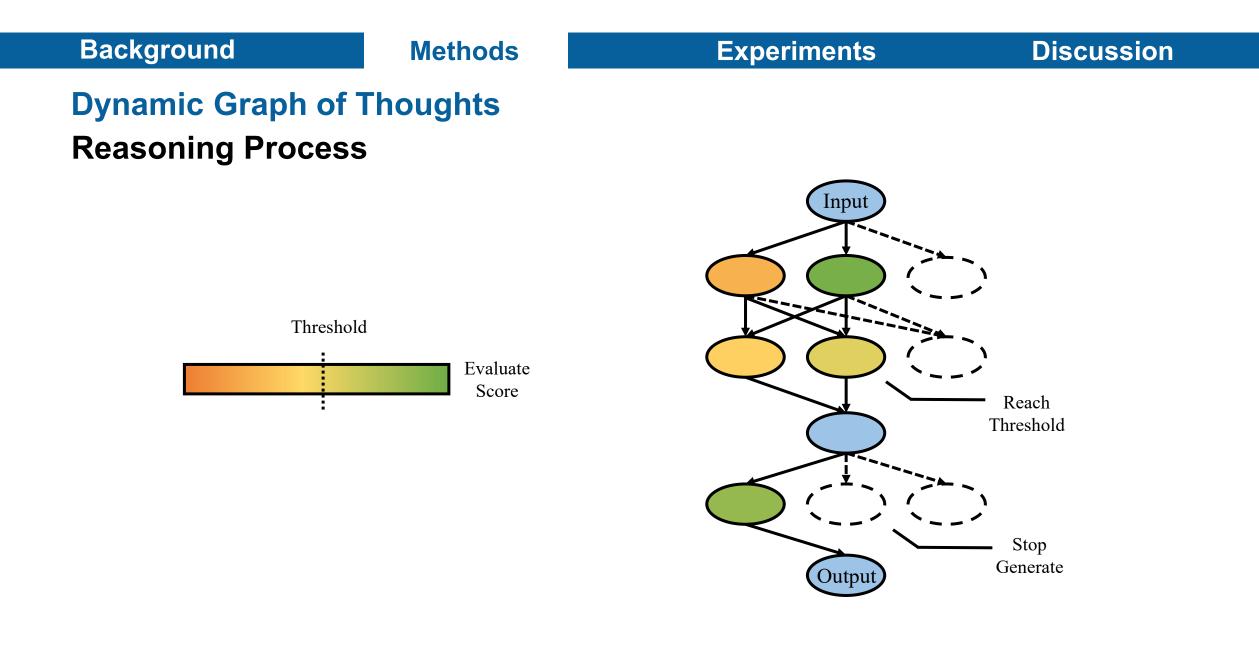
 $\mathcal{T}_{\mathrm{DI}}(G,p_{\theta},H)$

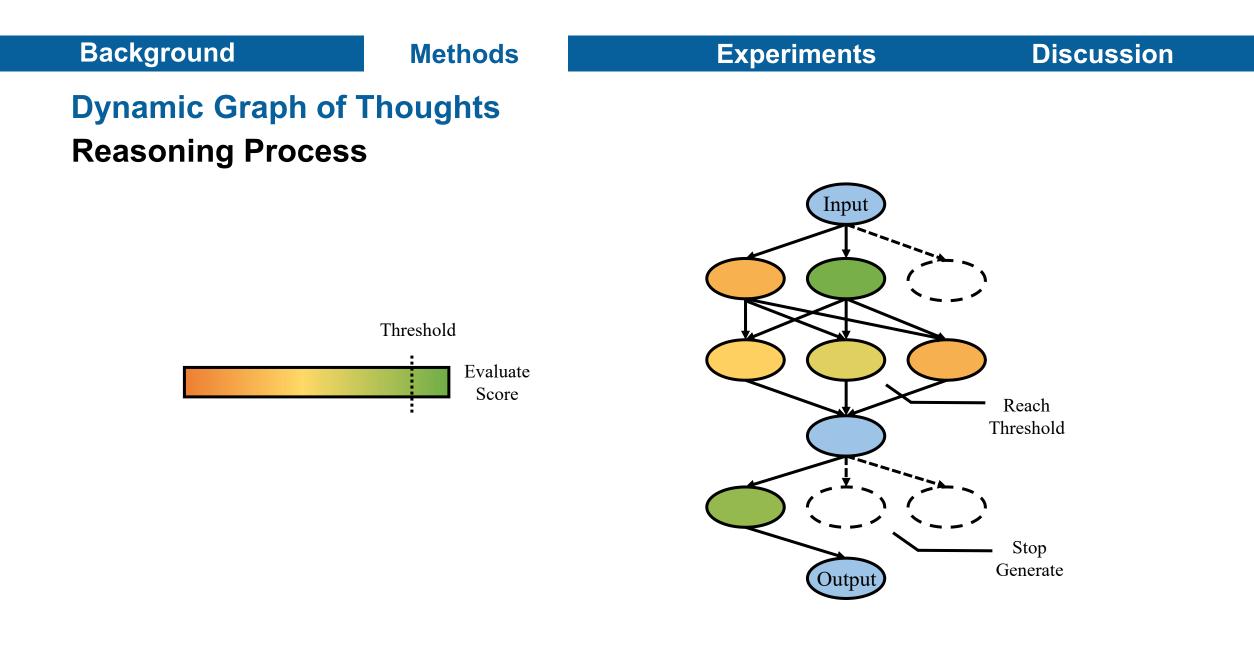
Ranking module

 $\mathcal{R}(G, p_{\theta}, h) \rightarrow \text{Top } h \text{ answers}$



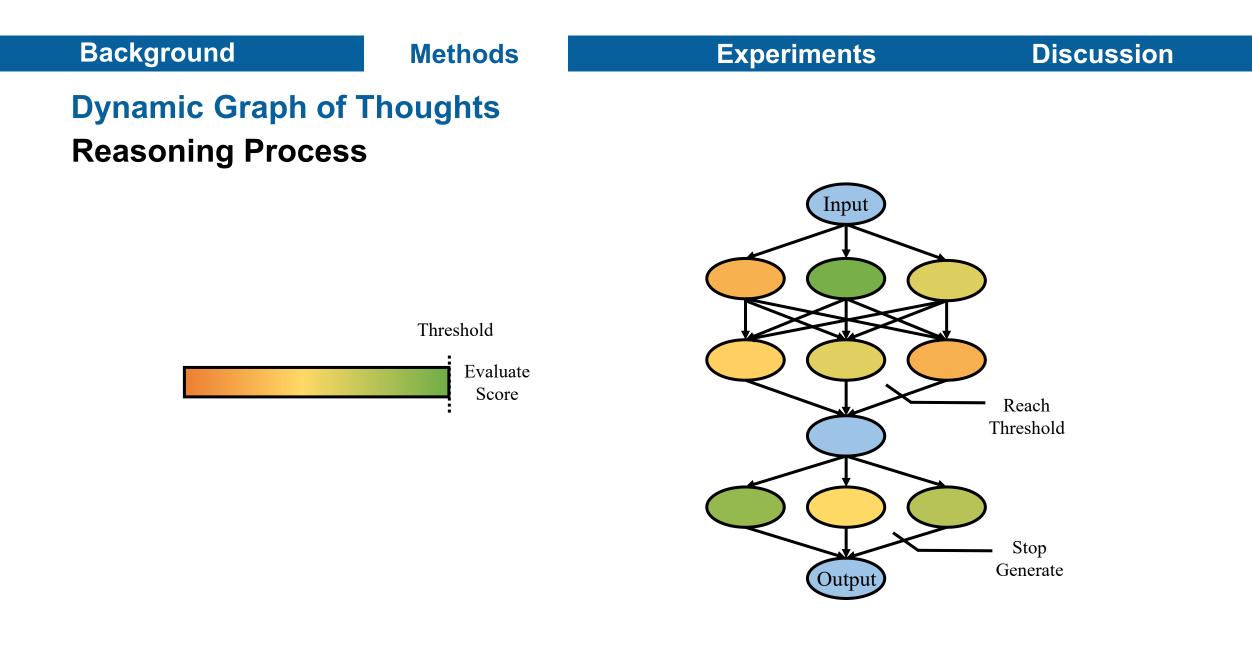






DGoT for Scientific Abstract Generation

BUPT



DGoT for Scientific Abstract Generation

BUPT

May 1, 2024

Main Experimental Result

Setup

BUPT

- Datasets: PubMedCite Inductive (Luo et al., 2023)
- Model: ChatGLM2-6B
 - Top *p* = 0.7
 - Temperature T = 0.7
- GPU: 24G 3090
- Prompt setting
 - Input length: 20000
 - Level: *L* = 3
 - Branching factor: k = 3

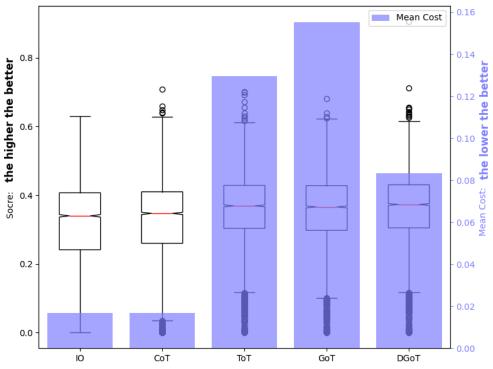
DGoT for Scientific Abstract Generation

Main Experimental Result

Compared with other prompt approaches

Method	R-1	R-2	R-L	Prompt Tokens	Response Tokens	Cost	Cost- effectiveness
10	0.303	0.081	0.166	10660.79	402.79	0.0167	
CoT	0.314	0.083	0.171	10644.81	358.77	0.0166	
ToT	0.356(0.042)	0.098	0.190	82850.63	2606.48	0.1294 (0.1128)	2.686
GoT	0.354(0.040)	0.099	0.190	99184.15	3219.40	0.1552 (0.1386)	3.465
DGoT	0.358(0.044)	0.099	0.192	53414.97	1565.12	0.0833 (0.0667)	1.516

- Quality: DGoT achieves the highest LOUGE score.
- Cost: 43.7% to 56.4% cost-effectiveness compared to other multi-round query prompt approaches.



Cost-effectiveness is defined as the cost required to improve the performance of a unit metric compared to a baseline method.

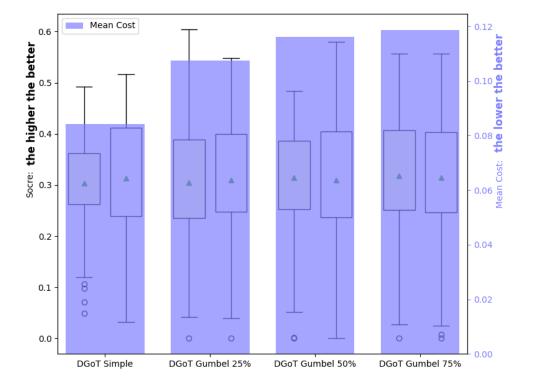
Therefore, the smaller the cost-effectiveness, the better.

Main Experimental Result

Effects of threshold function *H* **setting**

Setting			Abst. R-2		Cost
Simple	0.303	0.313	0.075	0.176	0.0841
25%	0.305	0.309	0.070	0.173	0.1075
50%	0.314	0.309	0.075	0.170	0.1161
75%	0.317	0.314	0.078	0.175	0.1186

- Increasing the threshold leads to higher Introduction R-1 scores.
- But Abstract ROUGE scores do not show a linear trend.



Conclusion

- Introduced a Dynamic Graph of Thought (DGoT) prompt method, dynamically adjusting graph structure to minimize language model costs.
- Established a threshold-setting mechanism for the DGoT evaluation function to provide a reference for performance and cost trade-offs.
- Experimental results demonstrate that our approach achieves the best cost-effectiveness in scientific literature abstract generation compared to other multi-round prompt methods.

Appendix - Further studies

- Other Potential Influencing Factors on the Results
 - Effect of Prompt Length
 - Effect of Branching Factors
 - Results under Optimal Prompt Length
- Prompt Framework for Transformations

Background

BUPT

Methods

Experiments

GoT 4096

GoT 8192

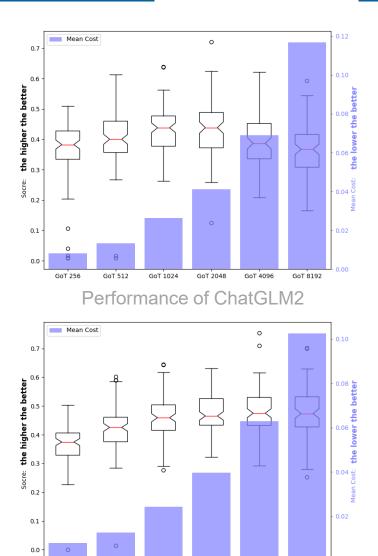
Appendix - Further studies Effect of Prompt Length

- Longer input is not necessarily better:
 - truncating input may lose citation information.

Model/ Method	Prompt Length	Cut Ratio	Intro. R-1	Abst. R-1	Abst. R-2	Abst. R-L	Prompt Tokens	Resp. Tokens	Infer. Time(s)	Cost
Chat-	256	0.993	0.339	0.367	0.091	0.189	2623.29	2062.74	76.61	0.008
GLM2/	512	0.973	0.456	0.400	0.111	0.192	5360.43	2613.06	96.05	0.013
GoT	1024	0.852	0.517	0.431	0.144	0.216	12881.78	3545.09	126.69	0.026
	2048	0.775	0.520	0.435	0.154	0.221	23189.33	3223.30	120.00	0.041
	4096	0.693	0.510	0.391	0.132	0.203	40675.92	3979.97	154.09	0.068
	8192	0.465	0.436	0.366	0.104	0.191	70249.50	5711.58	282.49	0.116
Intern-	256	0.993	0.317	0.368	0.097	0.187	3368.73	1440.99	37.16	0.007
LM2/	512	0.973	0.450	0.418	0.125	0.200	5949.60	1892.68	47.75	0.012
GoT	1024	0.830	0.418	0.456	0.164	0.235	13642.57	1894.43	48.89	0.024
	2048	0.740	0.447	0.471	0.176	0.240	23849.84	1965.58	53.24	0.039
	4096	0.670	0.447	0.482	0.190	0.259	39069.64	2139.46	60.76	0.062
	8192	0.436	0.422	0.479	0.183	0.250	65586.77	2049.10	72.41	0.102

Note: Experiment conducted on the first 100 training set data.

DGoT for Scientific Abstract Generation



GoT 256

GoT 512

GoT 1024

GoT 2048

Performance of InternLM2

May 1, 2024

Background

BUPT

Methods

Appendix - Further studies Effect of Prompt Length

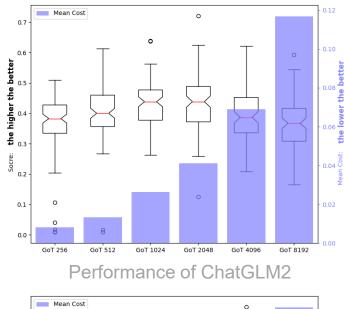
- Models differ in performance:
 - ChatGLM2 retains introduction information well, while InternLM2 excels

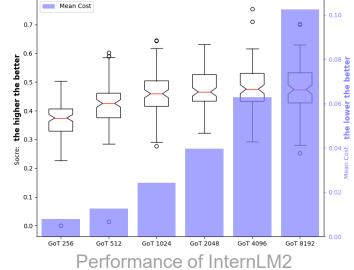
in abstract generation.

Model/ Method	Prompt Length	Cut Ratio	Intro. R-1	Abst. R-1	Abst. R-2	Abst. R-L	Prompt Tokens	Resp. Tokens	Infer. Time(s)	Cost
Chat-	256	0.993	0.339	0.367	0.091	0.189	2623.29	2062.74	76.61	0.008
GLM2/	512	0.973	0.456	0.400	0.111	0.192	5360.43	2613.06	96.05	0.013
GoT	1024	0.852	0.517	0.431	0.144	0.216	12881.78	3545.09	126.69	0.026
	2048	0.775	0.520	0.435	0.154	0.221	23189.33	3223.30	120.00	0.041
	4096	0.693	0.510	0.391	0.132	0.203	40675.92	3979.97	154.09	0.068
	8192	0.465	0.436	0.366	0.104	0.191	70249.50	5711.58	282.49	0.116
Intern-	256	0.993	0.317	0.368	0.097	0.187	3368.73	1440.99	37.16	0.007
LM2/	512	0.973	0.450	0.418	0.125	0.200	5949.60	1892.68	47.75	0.012
GoT	1024	0.830	0.418	0.456	0.164	0.235	13642.57	1894.43	48.89	0.024
	2048	0.740	0.447	0.471	0.176	0.240	23849.84	1965.58	53.24	0.039
	4096	0.670	0.447	0.482	0.190	0.259	39069.64	2139.46	60.76	0.062
	8192	0.436	0.422	0.479	0.183	0.250	65586.77	2049.10	72.41	0.102

Note: Experiment conducted on the first 100 training set data.

DGoT for Scientific Abstract Generation

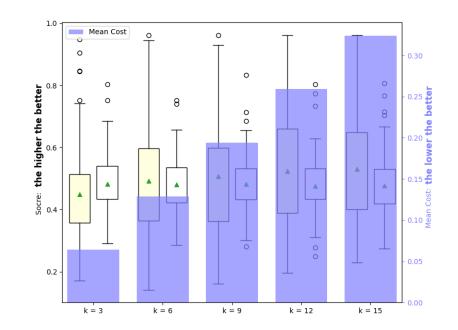




May 1, 2024

Appendix - Further studies Effect of Branching Factors

- The ROUGE scores of introduction and abstract are in trade-off.
- > As branching factor k improves,
 - Intro. R-1 scores improve,
 - Abst. R-1 scores do not improve.



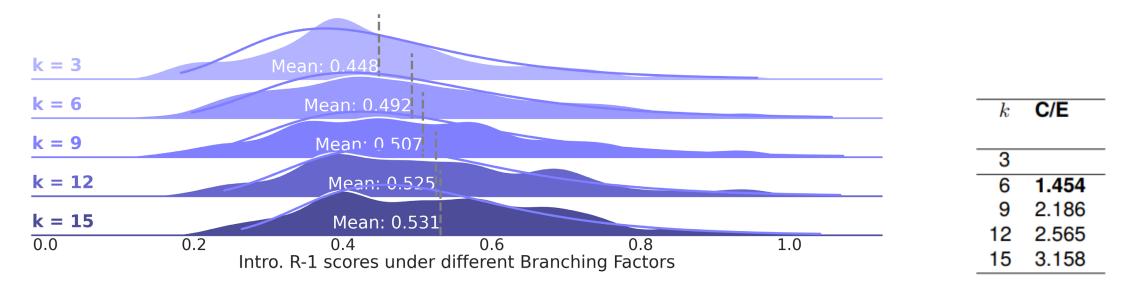
k	Introduction	Abst.	Abst.	Abst.	Prompt	Resp.	Infer.	Cost	C/E
	R-1	R-1	R-2	R-L	Tokens	Tokens	Time(s)		
3	0.448	0.481	0.191	0.264	39940.46	2088.17	60.86	0.064	
6	0.492(0.044)	0.480	0.187	0.250	80091.36	4360.62	122.64	0.128(0.064)	1.454
9	0.507(0.059)	0.481	0.188	0.255	120196.65	6761.61	187.29	0.193(0.129)	2.186
12	0.524(0.076)	0.475	0.190	0.255	160543.10	9139.17	251.58	0.259(0.195)	2.565
15	0.530 (0.082)	0.478	0.187	0.251	200225.20	11821.69	322.74	0.323(0.259)	3.158

Note: Experiment conducted on the first 100 training set data, using InternLM2.

🕙 BUPT

Appendix - Further studies Effect of Branching Factors

- Improving scores through additional inquiries demonstrates marginal utility.
 - The number of agents follows Scaling Laws.
 - There are limits to the performance gains it can bring.



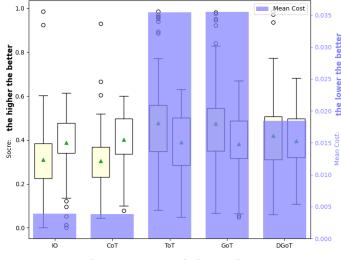
Note: Experiment conducted on the first 100 training set data, using InternLM2.

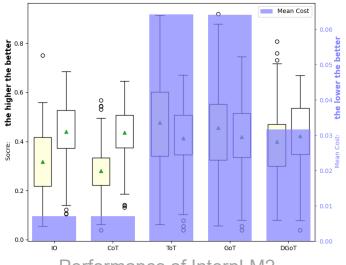
Appendix - Further studies Results under Optimal Prompt Length

The few-shot capability of large models has the potential to surpass the performance of previous best models [†].

Model	-	Introduction					Resp.	Infer.	Cost	C/E
	od	R-1	R-1	R-2	R-L	Tokens	Tokens	Time(s)		
Chat-	IO	0.311	0.387	0.126	0.204	2274.14	233.51	10.53	0.003	
GLM2	CoT	0.305	0.401	0.129	0.213	2269.77	214.12	9.84	0.003	
	ToT	0.476(0.171)	0.390	0.130	0.199	20465.34	2376.15	96.11	0.035(0.032)	0.187
	GoT	0.475(0.170)	0.382	0.128	0.196	20409.60	2442.31	97.25	0.035(0.032)	0.188
	DGoT	0.418(0.113)	0.395	0.129	0.199	10602.23	1256.39	55.19	0.018(0.015)	0.132
Intern-	10	0.317	0.439	0.164	0.242	4420.49	239.16	8.14	0.007	
LM2	CoT	0.279	0.436	0.158	0.237	4417.75	195.71	7.19	0.007	
	ToT	0.477(0.198)	0.414	0.148	0.212	39812.07	2241.35	67.43	0.064(0.057)	0.287
	GoT	0.456(0.177)	0.419	0.156	0.220	39732.42	2225.52	67.26	0.064(0.057)	0.322
	DGoT	0.399(0.120)	0.422	0.152	0.222	19690.67	1016.34	33.78	0.031(0.024)	0.200

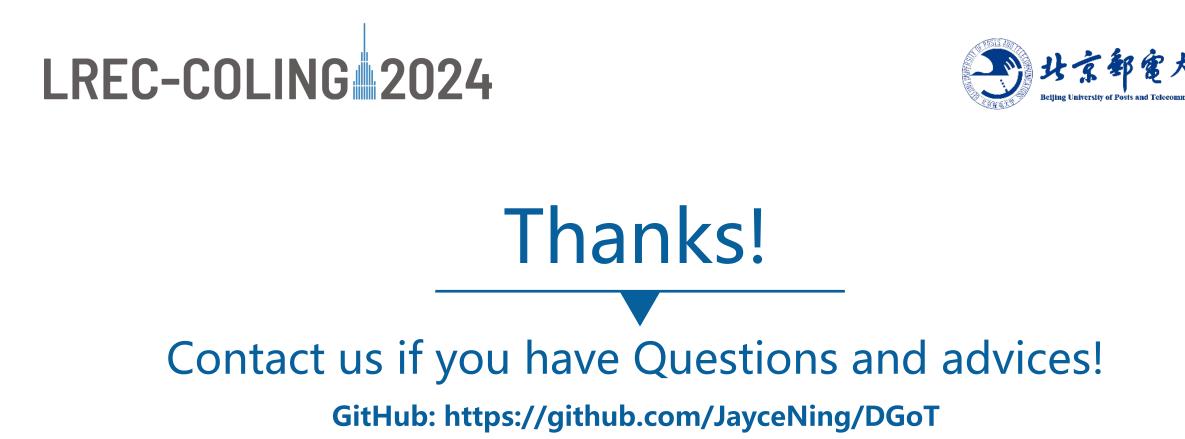
Note: Experiment conducted on the first 100 testing set data. The input lengths of ChatGLM2 and InterLM2 are 2048 and 4096, respectively. † Best R-1 score on PubMedCite Inductive dataset is 41.62 (Luo et al., 2023)





Performance of InternLM2

May 1, 2024



Xinyu Ning, Yutong Zhao, Yitong Liu*, Hongwen Yang {nxybupt, zhaoyutong, liuyitong, yanghong}@bupt.edu.cn

May 1, 2024