

Towards Robust Temporal Activity Localization Learning with Noisy Labels

Daizong Liu¹

¹Wangxuan Institute of Computer Technology, Peking University

Temporal Sentence Grounding

- Video-text retrieval task for segment localization
- Inputs: an untrimmed video and a sentence query
- Outputs: start and end timestamps of a specific video segment

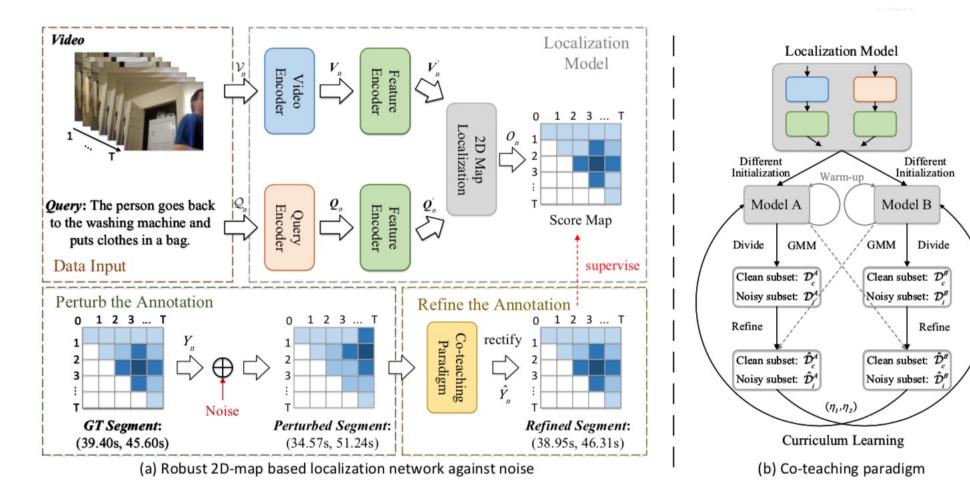
PEKING UNIVERSITY

Challenges

• Although recent works have made significant progress in TAL research, almost all of them depend on an implicit data assumption, i.e., the moment boundary labels in training data are correctly annotated. However, in practical scenarios, it is extremely expensive and time-consuming to annotate or collect such dense labeled data.

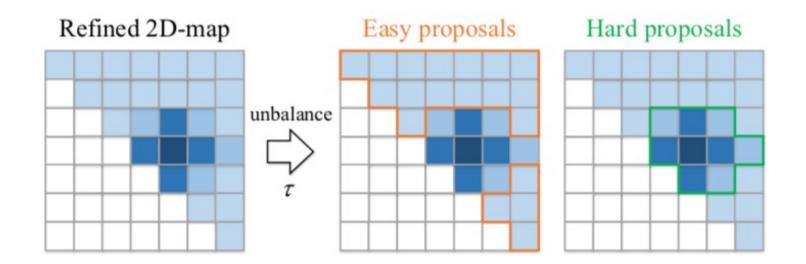
Motivation

- There are no extra annotations to distinguish the clean and noisy video-query samples. Therefore, it is hard to directly train a robust model in a fully-clean set.
- Noisy samples also provide additional knowledge during the training. How to rectify their labels for assisting the model learning is worth investigating.
- Utilizing a single model to distinguish samples and noisy labels might not be robust enough, since it may prone to specific mistakes during the training process.


PEKING UNIVERSITY

Motivation

• To tackle the above issues, we propose a novel framework, named Co-Teaching Regularizer (CTR). Our method is based on the memorization effect of DNNs, i.e., DNNs tend to learn the simple patterns before fitting noisy samples.


Pipeline

Pipeline

0.010181870

Quantitative Comparison

Noise		ActivityNet Caption			TACoS			Charades-STA					
Ratio	Method	R@1,	R@1,	R@5,	R@5,	R@1,	R@1,	R@5,	R@5,	R@1,	R@1,	R@5,	R@5,
nalio		loU=0.5	loU=0.7	IoU=0.5	IoU=0.7	loU=0.3	IoU=0.5	loU=0.3	loU=0.5	loU=0.5	IoU=0.7	loU=0.5	loU=0.7
	SCDM (Yuan et al., 2019a)	36.75	19.86	64.99	41.53	26.11	21.17	40.16	32.18	54.44	33.43	74.43	58.08
	VSLNet (Zhang et al., 2020a)	43.22	26.16	-	-	29.61	24.27	-	-	54.19	35.22	-	-
	CMIN (Zhang et al., 2019b)	43.40	23.88	67.95	50.73	24.64	18.05	38.46	27.02	-	-	-	-
0%	2DTAN (Zhang et al., 2020b)	44.51	26.54	77.13	61.96	37.29	25.32	57.81	45.04	39.81	23.25	79.33	51.15
	DRN (Zeng et al., 2020)	45.45	24.36	77.97	50.30	-	23.17	-	33.36	53.09	31.75	89.06	60.05
	MMN (Wang et al., 2022)	48.59	29.26	79.50	64.76	39.24	26.17	62.03	47.39	47.31	27.28	83.74	58.41
	CTR	46.74	28.39	79.62	64.15	39.97	27.86	60.73	47.28	45.04	27.91	89.50	58.77
	SCDM (Yuan et al., 2019a)	23.95	11.09	52.51	32.04	16.47	13.05	29.73	25.34	44.12	26.23	71.92	47.57
	VSLNet (Zhang et al., 2020a)	31.17	17.72	-	-	18.94	14.83	-	-	43.84	26.66	-	-
	CMIN (Zhang et al., 2019b)	33.56	16.35	56.48	40.39	15.33	10.26	28.19	18.65	-	-	-	-
20%	2DTAN (Zhang et al., 2020b)	35.24	19.07	66.94	53.21	26.06	18.48	45.96	36.81	31.16	19.32	69.01	40.43
	DRN (Zeng et al., 2020)	33.31	14.49	64.37	40.86	-	17.33	-	25.98	42.58	23.74	75.76	46.28
	MMN (Wang et al., 2022)	36.83	21.44	64.75	52.72	28.80	18.62	49.53	37.15	36.39	21.05	71.11	45.64
	CTR	45.10	26.57	78.29	62.45	38.64	26.39	59.38	45.72	44.60	27.03	88.71	56.95
	SCDM (Yuan et al., 2019a)	12.27	4.90	22.31	14.28	12.04	9.88	16.19	13.56	29.25	12.57	30.73	20.62
	VSLNet (Zhang et al., 2020a)	19.14	10.38	-	-	12.27	10.52	-	-	28.64	13.16	-	-
	CMIN (Zhang et al., 2019b)	21.85	10.52	26.76	22.44	12.59	8.71	15.45	9.30	-	-	-	-
50%	2DTAN (Zhang et al., 2020b)	24.36	14.01	38.26	31.80	23.92	14.35	30.41	23.28	16.26	8.94	27.85	14.39
	DRN (Zeng et al., 2020)	22.03	10.47	35.72	25.19	-	12.67	-	15.88	22.47	11.51	30.73	18.99
	MMN (Wang et al., 2022)	25.58	15.65	36.94	31.93	26.06	15.11	35.74	24.52	18.72	10.09	29.38	18.60
	CTR	40.92	23.86	74.37	59.17	34.29	22.93	55.44	41.96	41.18	23.51	84.64	53.27

Table 1: Performance comparison on ActivityNet Caption, TACoS, and Charades-STA datasets.

Quantitative Comparison

Model	Co-Teaching Paradigm			Curriculum	R@1,	R@1,	R@5,	R@5,	
woder	Divide data	Refine label	Warm-up	Balanced weigh	nts Controllers	loU=0.5	loU=0.7	loU=0.5	loU=0.7
Backbone	×	×	×	×	×	23.82	15.25	39.14	32.37
1	\checkmark	×	\checkmark	×	×	31.47	18.71	58.93	46.59
2	×	\checkmark	\checkmark	×	×	25.63	15.19	42.38	33.43
3	\checkmark	\checkmark	×	×	×	3.94	0.85	16.46	11.71
4	\checkmark	\checkmark	\checkmark	×	×	35.88	21.02	65.60	51.92
5	\checkmark	\checkmark	\checkmark	\checkmark	×	38.96	22.74	71.23	56.25
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	40.92	23.86	74.37	59.17

Table 2: Main ablation study on the ActivityNet Caption dataset with 50% noise ratio.

Quantitative Comparison

Noise	Method	R@1,	R@1,	R@5,	R@5,
Level	Metriod	loU=0.5	IoU=0.7	loU=0.5	IoU=0.7
	2DTAN (Zhang et al., 2020b)	44.51	26.54	77.13	61.96
0.0	DRN (Zeng et al., 2020)	45.45	24.36	77.97	50.30
0.0	MMN (Wang et al., 2022)	48.59	29.26	79.50	64.76
	CTR	46.74	28.39	79.62	64.15
	2DTAN (Zhang et al., 2020b)	32.88	17.31	63.46	51.32
0.2	DRN (Zeng et al., 2020)	31.06	12.38	63.19	38.60
0.2	MMN (Wang et al., 2022)	34.35	19.84	61.57	50.51
	CTR	43.69	25.80	76.83	61.07
	2DTAN (Zhang et al., 2020b)	19.21	10.15	32.98	27.35
0.5	DRN (Zeng et al., 2020)	16.85	7.46	30.04	20.73
	MMN (Wang et al., 2022)	20.17	11.39	31.82	27.06
	CTR	38.33	21.81	71.20	56.73

Table 3: Performance comparison on the ActivityNet dataset with different noise level.

Module	Change	R@1,	R@1,	R@5,	R@5,
woule	Change	loU=0.5	loU=0.7	loU=0.5	loU=0.7
	w/. GMM	40.92	23.86	74.37	59.17
	w/. BMM	35.37	20.65	68.24	55.91
Divide data		37.75	21.44	70.18	56.83
	$ au_1 = 0.5$	40.92	23.86	74.37	59.17
	$ au_1 = 0.6$	39.03	22.61	71.94	57.50
Refine clean	w/. sharpen	40.92	23.86	74.37	59.17
subset	w/o. sharpen	39.01	22.34	72.11	57.62
Refine noisy	w/. sharpen	38.87	22.45	71.79	57.14
subset	w/o. sharpen	40.92	23.86	74.37	59.17

Table 4: The ablation study of the co-teaching paradigm on the ActivityNet Caption dataset with 50% noise ratio.

Ablation Study

Change	R@1,	R@1,	R@5,	R@5,
Change	loU=0.5	loU=0.7	IoU=0.5	IoU=0.7
$\tau_2 = 0.45$	36.37	21.09	68.75	54.96
$\tau_2 = 0.50$	38.84	22.51	71.82	57.54
$\tau_2 = 0.55$	40.92	23.86	74.37	59.17
$\tau_2 = 0.60$	39.65	24.08	74.14	59.13
step = 5	39.16	22.35	72.25	57.84
step = 10	40.92	23.86	74.37	59.17
step = 15	41.03	23.79	74.42	58.99
step = 20	40.85	23.47	74.16	58.64
	$\tau_2 = 0.50$ $\tau_2 = 0.55$ $\tau_2 = 0.60$ step = 5 step = 10 step = 15	ChangeIoU=0.5 $\tau_2 = 0.45$ 36.37 $\tau_2 = 0.50$ 38.84 $\tau_2 = 0.55$ 40.92 $\tau_2 = 0.60$ 39.65step = 539.16step = 1040.92step = 1541.03	ChangeIoU=0.5IoU=0.7 $\tau_2 = 0.45$ 36.3721.09 $\tau_2 = 0.50$ 38.8422.51 $\tau_2 = 0.55$ 40.92 23.86 $\tau_2 = 0.60$ 39.65 24.08 step = 539.1622.35step = 1040.92 23.86 step = 15 41.03 23.79	ChangeIoU=0.5IoU=0.7IoU=0.5 $\tau_2 = 0.45$ 36.3721.0968.75 $\tau_2 = 0.50$ 38.8422.5171.82 $\tau_2 = 0.55$ 40.9223.8674.37 $\tau_2 = 0.60$ 39.6524.0874.14step = 539.1622.3572.25step = 1040.9223.8674.37step = 1541.0323.7974.42

Table 5: The ablation study of the curriculum learning on the ActivityNet Caption dataset with 50% noise ratio.

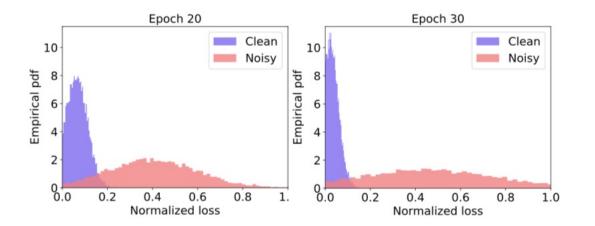


Figure 5: *Left:* The probability density function (PDF) on the clean and noisy sample when we re-train the model with 20 epochs. *Right:* The PDF when we re-train the model with 30 epochs.

Qualitative Results

Query: The man cleans again with soap and water the car for the second time.

Ground-Truth	31.16s ◀ → 64.91s
Noisy Label	18.72s 🗲
2DTAN	21.37s 🗲
MMN	25.54s 🗲
Ours	30.03s ← → 62.79s

Query: The person jumps up on a skateboard and grinds a rail.

Ground-Truth	5.91s 13.70s
Noisy Label	12.18s ◀ ► 17.06s
2DTAN	12.63s ← → 17.01s
MMN	10.85s ◀ → 16.72s
Ours	7.20s 🗲 14.33s

Thanks!

Email: dzliu@stu.pku.edu.cn

