Unveiling Vulnerability of Self-Attention

Khai Jiet Liong, Hongqiu Wu, Hai Zhao

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

LREC-COLING 2024

Background

- Susceptibility to Perturbations: Minor changes in wording or complex cues like sarcasm can mislead models like BERT (Devlin et al., 2019).
- **Keyword Sensitivity**: PLMs may incorrectly overemphasize irrelevant or spurious keywords, affecting understanding and context interpretation.
- Example Error: Misinterpreting the phrase, "This movie as good as oatmeal.", due to improper emphasis on non-indicative words.""

Review of Existing Adversarial Techniques

- Attacks: Word manipulation (substitution, swapping, insertion) to deceive models. (Jin et al., 2020)
- Defenses: Adversarial training i.e. CreAT, (Wu et al., 2023) and data augmentation.
- Challenges: Leads to performance degradation on clean data and input domain shift.

Rethinking PLM's Vulnerability

Core Insights:

- 1. Internal Mechanisms: Vulnerabilities stem from the internal mechanisms of PLMs.
- 2. Focus on Self-Attention: Self-Attention (SA) mechanism particularly in the transformers (Vaswani et. al., 2017) has vulnerability.

Contributions of This Work:

- HackAttend: A novel perturbation method that directly targets the SA mechanism to reveal vulnerabilities.
- 2. S-Attend: A straightforward and effective defensive mechanism to mitigate these vulnerabilities and against other general attacks.

Outline

- HackAttend Generating 'Adversarial' Samples
- S-Attend HackAttend inspired smoothing
- Experiment
 - Evaluation metrics
 - Results
- Case study

Introducing HackAttend

- Specifically targets and disrupts the SA weights within SA matrices.
- Adversarial samples in the form of custom attention masks

 NOT an adversarial attack as this method requires access to the backpropagation gradients

A SA Matrix

Methodology

Evaluation Metrics

- Attack Success Rate Number of incorrect predictions after pertubation
- Clean Accuracy Accuracy score on the clean set
- Robust Accuracy Accuracy score on under perturbation
- Hamming distance Quantifies the differences between the original attention matrix and adversarial attention matrix

$$d_H(M, M') = \frac{\sum_{i=1}^{N_{SA}} (M_i \oplus M'_i)}{N_{SA}}$$

Findings

- Tasks Tested: Reading comprehension, logical reasoning, sentiment analysis, and natural language inference.
- Results: Demonstrates that state-of-the-art models are highly vulnerable to HackAttend with a high attack success rate.

Dataset	Max N	ASR%	clean%	robust%	# Query	Hamming
DREAM	12 6	98.9 91.2	64.7	$0.7 \\ 5.7$	18.6 11.2	611.4 618.2
HellaSWAG	12 6	99.9 96.7	39.6	0.0 1.3	8.8 7.1	1222.2 1232.8
ReClor	12 6	100.0 99.6	51.8	0.0 0.2	7.3 6.5	2151.3 2153.7
SST-2	12 6	27.4 10.2	93.9	67.8 83.8	123.6 34.1	9.3 9.5

Dataset	Mask%	ASR%	Hamming	# Query
DREAM	1.00 0.10 0.01	98.9 91.2 72.7	611.4 62.4 5.7	18.6 36.3 58.9
HellaSWAG	1.00 0.10 0.01	99.9 98.9 92.5	1221.2 121.6 11.5	8.8 17.6 29.7
SST-2	1.00 0.10 0.01	27.4 6.4 6.4	9.3 1.1 1.0	123.6 139.0 139.1
ReClor	1.00 0.10 0.01	100.0 100.0 84.9	2151.3 213.3 19.4	7.3 15.9 40.7

S-Attend: A Novel Smoothing Technique

 a technique that smooths attention scores during training, thereby increase model robustness.

Inspirations:

- Adversarial Self Attention (ASA): Inspired by ASA (Wu et al., 2023), which teaches models to moderate focus on specific keywords by reversing gradients of important attention units.
- HackAttend: Further inspired by HackAttend's demonstration of vulnerabilities, specifically how models can be misled by manipulated attention.

• Efficiency and Cost:

- high cost of storing custom attention masks (i.e. 144 attention matrix for bert-base)
- randomly mask out attention units following Bernoulli distribution with $\alpha = \{0.1, 0.2, 0.5\}$.

Results

- Increase robustness with minimal impact on performance without additional computationally intensive steps required by FreeLB (Zhu et al., 2020) and ASA (Wu et al., 2023).
- Minimal sacrifice on clean accuracy

Dataset	Defense/Smoothing	clean%	robust%	
Dalasei	Delense/Sinouthing	Cicari /6	TF	BA
	Baseline	51.8	0.8	2.0
	CreAT	49.0	46.6	48.0
	FreeLB	50.4	50.2	49.6
ReClor	TF(ADA)	47.8	47.4	47.8
Necioi	BA(ADA)	47.4	47.0	46.6
	S-Attend ($\alpha = 0.1$)	48.6	47.4	47.8
	S-Attend ($\alpha = 0.2$)	51.0	50.0	49.6
	S-Attend † ($lpha=0.5$)	52.8	51.4	51.2
DREAM	Baseline	64.7	19.3	3.8
	CreAT	65.0	55.1	55.2
	FreeLB	65.1	56.2	55.1
	TF(ADA)	57.4	55.6	54.1
	BA(ADA)	55.7	51.9	52.5
	S-Attend ($\alpha = 0.1$)	63.2	54.2	52.8
	S-Attend † ($\alpha=0.2$)	64.4	54.6	53.7
	S-Attend ($\alpha=0.5$)	63.0	53.0	52.8

Table 7: Robust Performance Evaluation: Baseline model vs. Adversarial Training models vs. ADA models. Baseline represents regular fine-tuned BERT base. † denotes the best *S-Attend* Model.

Results against HackAttend

 In the event of new type of attack/perturbation, S-Attend is structurally more robust

Dataset	Method	Mask%	ASR%
	Baseline		100.0
	S-Attend	1.00	100.0
	CreAT	1.00	100.0
ReClor	FreeLB		100.0
	Baseline		99.6
	S-Attend	0.10	87.1
	CreAT	0.10	100.0
	FreeLB		100.0
	Baseline		98.9
	S-Attend	1.00	97.5
	CreAT	1.00	100.0
DREAM	FreeLB		98.9
	Baseline		91.2
	S-Attend	0.10	85.1
	CreAT		90.0
	FreeLB		88.3

Table 8: Robustness evaluation against *HackAttend* perturbations. Adversarial Training vs. *S-Attend* smoothing. Baseline represents regular fine-tuned model.

Case Study

A <u>solid</u> hard examination of the male midlife crisis (Positive) Adversarial sample generated (BERT-Attack (Li et al., 2020)) A hard examination of the male midlife crisis (Negative)

- suggest that models tend to heavily rely on word matching (Hao et al., 2021).

Conclusion

- Presented HackAttend and S-Attend
 - HackAttend
 - A method to target model structural weakness, particularly SA mechanism
 - S-Attend
 - Robust against spectrum of attacks
 - Promotes the activation of SA components
 - Aids in reducing sensitivity to noisy input data
 - Helps the model to learn a more generalized representation