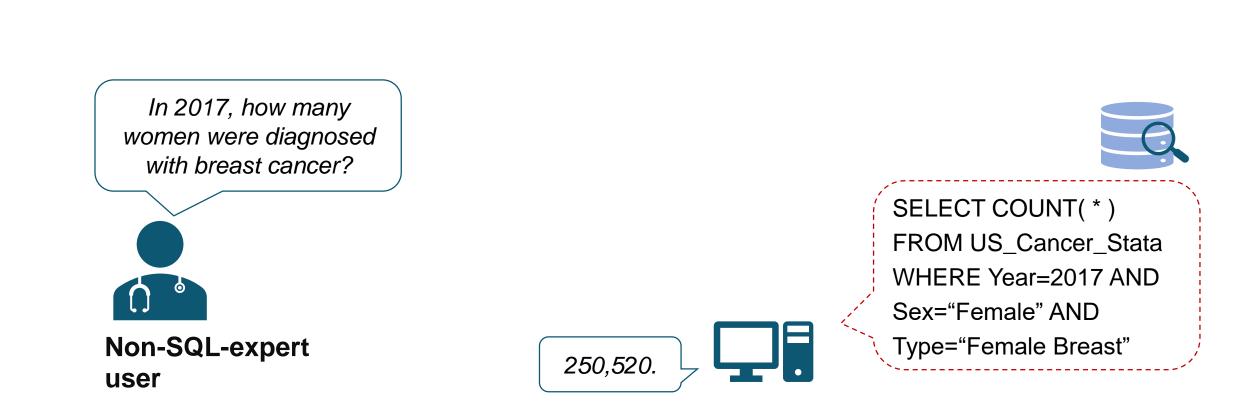
Zhao Tan, Xiping Liu, Qing Shu, Xi Li, Changxuan Wan, Dexi Liu, Qizhi Wan, Guoqiong Liao

Text-to-SQL Semantic Parsing



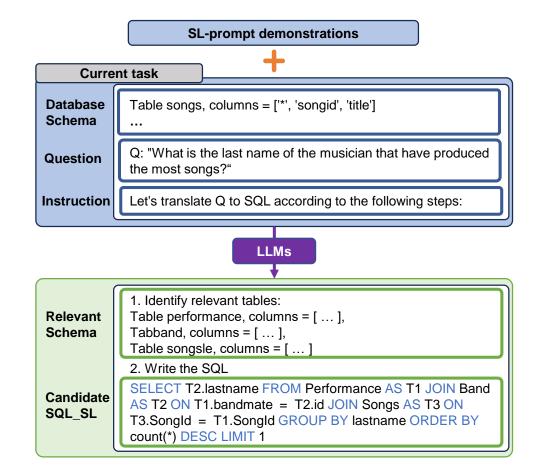
Two Paradigms for Developing Text-to-SQL Parsers

Two Pain Points for Text-to-SQL Semantic Parsing

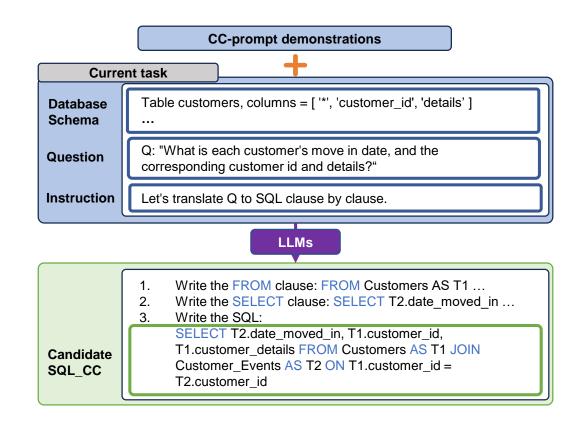
- Schema Linking
- SQL Generation

Our Prompting Methods

Schema Linking → SL-prompt



SQL Generation → CC-prompt

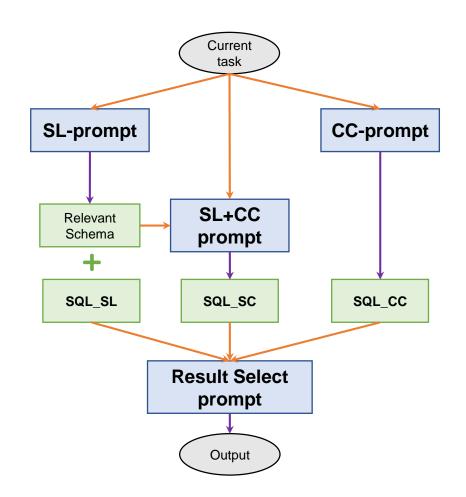


Our Prompting Methods

Combining prompt → SL+CC prompt

	SL+CC prompt demonstrations						
Current task							
Database Schema	Table customers, columns = ['*', 'customer_id', 'details'] 						
Question	Q: "What is each customer's move in date, and the corresponding customer id and details?"						
Relevant Schema	Relevant tables: Table customers, columns = [], 						
Instruction	Let's translate Q to SQL clause by clause. The relevant tables are likely to be used in the translation.						
LLMs							
Candidate SQL_SC	 Write the FROM clause: FROM Customers AS T1 Write the SELECT clause: SELECT T2.date_moved_in Write the SQL: SELECT T2.date_moved_in, T1.customer_id, T1.customer_details FROM Customers AS T1 JOIN Customer_Events AS T2 ON T1.customer_id = T2.customer_id 						

• Overview



Our Prompting Methods

Candidate Select → Result Select prompt

Instruction	Given the following information: a database schema, a natural language question, and some SQL queries, your task is to perform the following steps:
Database Schema	Database Schema: Table model_list, columns = ['*', 'modelid', 'maker', 'model'] ,
Question	Q: " Which model of the car has the minimum horsepower?"
Candidate SQL1 (SQL_SL)	SELECT model_list.model FROM cars_data JOIN car_names ON cars_data.id = car_names.makeid JOIN model_list ON car_names.model = model_list.model JOIN (SELECT MIN(horsepower) AS min_hp FROM cars_data) AS min_hp_table ON cars_data.horsepower = min_hp_table.min_hp
Candidate SQL2 (SQL_CC)	SELECT model FROM model_list WHERE modelid IN (SELECT id FROM cars_data WHERE horsepower = (SELECT MIN(horsepower) FROM cars_data))
Candidate SQL3 (SQL_SC)	SELECT T3.model FROM cars_data AS T1 JOIN car_names AS T2 ON T1.id = T2.makeid JOIN model_list AS T3 ON T2.model = T3.model ORDER BY T1.horsepower ASC LIMIT 1
Tasks	 Explain both each SQL separately. Determine which one SQL correctly answers the given question.

1. Explanation of SQL queries:

Μ

S

SQL1: This SQL query attempts to find the car model with the minimum horsepower by joining the three tables cars_data, cars_names, and model_list, along with a subquery. However, if there are multiple cars with a minimum horsepower, then this query will return models for all of those cars, not just one. SQL2: This SQL query attempts to select the model by selecting it from the model_list table, where the modelid is in a list generated by a subquery. However, the problem with this query is that it incorrectly assumes that the id field in the cars_data table.

SQL3: This SQL query is designed to find the car model with the lowest horsepower. It does this by joining the three tables cars_data, car_names, and model_list. The query then ...

2. The SQL query that correctly answers the given question is SQL3.

Exprimental Setup

- LLMs
 - GPT-3.5-Turbo
 - GPT-4

• Datasets:

- Spider (Yu et al., 2018)
- Spider-DK (Gan et al., 2021a)
- Spider-SYN (Gan et al., 2021b)
- Spider-Realistic (Deng et al., 2021)
- Evaluation Metric
 - Execution Accuary (Yu et al., 2018)
 - Test-Suite Accuary (Zhong et al., 2020)

Exprimental Results

Methods	EX	TS
Few-shot + CodeX (Rajkumar et al., 2022)	67.0	55.1
Zero-shot + ChatGPT (Liu et al., 2023)	70.1	60.1
Coder-Reviewer + CodeX(Zhang et al., 2022)	74.5	-
MBR-Exec (Shi et al., 2021)	75.2	-
T5-3B + PICARD (Scholak et al., 2021)	79.3	69.4
RASAT + PICARD (Li et al., 2023b)	80.5	70.3
LEVER + CodeX (Ni et al., 2023)	81.9	-
RESDSQL-3B + NatSQL (Li et al., 2023a)	84.1	73.5
Self-Debug + CodeX (Chen et al., 2023)	84.1	-
SPDS + CodeX (Nan et al., 2023)	84.4	-
DIN-SQL + GPT-4 (Pourreza and Rafiei, 2023)	85.1	74.2
Ours (GPT-3.5)	78.6	68.3
Ours (GPT-4)	86.2	76.9

Exprimental Results

Methods	Spide EX	r-DK TS	Spide EX	er-Syn TS	Spider EX	-Realistic TS
T5-3B + PICARD (Scholak et al., 2021)	62.5	-	69.8	61.8	71.4	61.7
RASAT + PICARD (Wang et al., 2020)	63.9	-	70.7	62.4	71.9	62.6
RESDSQL-3B + NatSQL (Li et al., 2023a)	66.0	-	76.9	66.8	81.9	70.1
Zeroshot + ChatGPT (Liu et al., 2023)	62.6	-	58.6	48.5	63.4	49.2
Ours (GPT-3.5) Ours (GPT-4)	63.9 67.2	-	67.1 78.1	57.6 68.6	70.7 82.8	58.3 70.6

Exprimental Results

Execution accuracy						
Methods	Extra-hard	EX				
Few-shot + GPT-3.5	91.1	78.5	58.0	46.4	72.9	
Ours (GPT-3.5)	91.5	85.4	67.0(11.9 ↑)	53.6	78.6	
Few-shot + GPT-4	90.7	84.7	76.7	54.8	80.0	
Ours (GPT-4)	92.7	91.2	84.1	65.1(9.0 ↑)	86.2	
	T	est-suit ac	curacy			
Methods Easy Medium Hard Extra-hard TS						
Few-shot + GPT-3.5	90.3	67.6	42.6	26.4	62.3	
Ours (GPT-3.5)	90.7	77.3	52.8 (9.0 ↑)	27.1	68.3	
Few-shot + GPT-4	86.7	73.1	59.2	31.9	67.4	
Ours (GPT-4)	90.4	82.2	71.8	48.2(16.3 ↑)	76.9	

Analysis of each promptins

Methods	Easy	Medium	Hard	Extra-hard	EX
SL-prompt + GPT-3.5	92.7	79.3	68.8	48.2	75.7
CC-prompt + GPT-3.5	91.5	79.1	63.1	48.2	74.4
SL+CC prompt + GPT-3.5	88.7	82.0	70.5	51.8	76.8
SL-prompt + GPT-4	96.0	87.6	79.0	65.7	84.6
CC-prompt + GPT-4	93.1	86.5	78.4	59.0	82.3
SL+CC prompt + GPT-4	92.7	89.4	80.7	66.9	85.1

Analysis of each promptins

L-prompt	CC-prompt	SL+CC prompt	SUM
	GPT-	3.5	
\checkmark	×	×	21
×	\checkmark	×	27
X	×	✓	29
×	<u>×</u>	×	157
\checkmark	\checkmark	\checkmark	669
	GPT	-4	
\checkmark	×	×	9
×	\checkmark	×	6
×	×	\checkmark	16
×	×	×	111
\checkmark	\checkmark	\checkmark	791

Analysis of SL-prompt Structure

	SL-prompt structure	EX	TS
(a)	1. Identify relevant table names: t_a, t_b, \ldots 2. Identify relevant column names: $c_1^{t_a}, c_2^{t_a}, c_1^{t_b}, \ldots$ 3. Write SQL: SELECT	66.9	61.3
(b)	1. Identify relevant tables : $(t_a : c_1^{t_a}, \dots, c_{ \mathcal{C} }^{t_a}), (t_b : c_1^{t_b}, \dots, c_{ \mathcal{C} }^{t_b}), \dots$ 2. Identify relevant column names : $c_1^{t_a}, c_2^{t_a}, c_1^{t_b}, \dots$ 3. Write SQL: <i>SELECT</i>	70.9	65.0
(c)	1. Identify relevant tables : $(t_a : c_1^{t_a}, \dots, c_{ \mathcal{C} }^{t_a}), (t_b : c_1^{t_b}, \dots, c_{ \mathcal{C} }^{t_b}), \dots$ 2. Write SQL: <i>SELECT</i>	75.7	68.5

Analysis of CC-prompt Structure

	CC-prompt structure	EX	TS
(a)	 Write the SELECT clause: SELECT Write the FROM clause: FROM Write other clauses: Write SQL: SELECT 	73.5	64.4
(b)	 Write the FROM clause: FROM Write the SELECT clause: SELECT Write other clauses: Write SQL: SELECT 	73.7	64.6
(C)	 Write the FROM clause: FROM Write other clauses: Write the SELECT clause: SELECT Write SQL: SELECT 	74.4	65.1

Our Contributions and Findings

- Tailored prompting methods for Text-to-SQL parsing
 - *SL-prompt, CC-prompt, SL+CC prompt*
 - A in-deep analysis of promptings structure
- A guideline for designing prompting methods for Text-to-SQL parsing
 More details in our paper!

Thank you!

Email: tanzhao325@gmail.com