•<

• • • •

SLaCAD: A Spoken Language Corpus for Early Alzheimer's Disease Detection

Presenter: Shahla Farzana, PhD

UIC-NLP Laboratory Department of Computer Science, University of Illinois Chicago **1 May, 2024**

Dementia and Cognitive Impairment

Early Screening of Dementia

Preclinical AD: The stage in which clinical symptoms have not yet appeared but there is evidence of AD pathogenesis via biomarkers.¹

Goal: Explore relationships between **lexico-syntactic and acoustic features** and **neural biomarkers**

 Can we recognize language differences after biomarkers of dementia appear, but before behavior change is observed in cognitive tests?

¹Marco Canevelli, Nawal Adali, Cécile Tainturier, Giuseppe Bruno, Matteo Cesari, and Bruno Vellas. 2013. Cognitive interventions targeting subjective cognitive complaints. American Journal of Alzheimer's Disease & Other Dementias®, 28(6):560–567. PMID: 23823142.

- •
- • •
- • •
- • •
- . . .

SLAcAD: A Spoken Language Corpus for Early Alzheimer's Disease Detection

Corpus	Class	# Participants	# Transcripts	Time (Minutes)
SLaCAD	Dementia	3	3	2.99±0.98
	MCI	6	6	3.74±1.24
	Control	82	82	5.23±2.13

INV: yes but i'm gonna ask you few more questions. okay alright. can you describe when you became the leader of the dining hall please?

PAR: can i describe what?

INV: that specific day when

PAR: oh that specific day, let's see, it was my it was uh it was in my second year so that would be nineteen forty two in in this in the in the fall of forty two i would say september i can't give you the specific day but i i...

Preclinical AD variables

CSF based	CSF based	Blood based
biomarker	biomarker	biomarker
tTau/Aβ₄₂ Positivity: tTau/Aβ₄₂≥ 0.609 ¹	$A\beta_{42}/A\beta_{40}$ Positivity: $A\beta_{42}/A\beta_{40} \le 0.056^{1}$	Plasma Tau (pTau ₁₈₁) Positivity : pTau ₁₈₁ concentration ≥4.09 pg/ml

Chappelle, S.D., Gigliotti, C., Leger, G.C., Peavy, G.M., Jacobs, D.M., Banks, S.J., Little, E.A., Galasko, D.R. and Salmon, D.P. (2022), Comparison of the Telephone-Montreal Cognitive Assessment (T-MoCA) and Telephone Interview for Cognitive Status (TICS) as Remote Screening Tests for Early Alzheimer's Disease.. Alzheimer's Dement., 18: e065917.

Preclinical AD variables

	tTau/Aβ ₄₂		Αβ ₄₂ /Αβ ₄₀		pTau ₁₈₁	
	Negative	Positive	Negative	Positive	Negative	Positive
	n=51	n=12	n=44	n=19	n=50	n=27
Age	74.22±	77.66±	74.16±	76.53±	74.46±	78.44±
	4.63	7.13	4.74	6.00	4.63	5.89
Education (in	17.56±	17.42±	17.52 ±	17.58±	17.10±	17.93± 1.69
year)	2.05	2.84	2.14	2.28	2.37	
Gender (F/M)	30/20	7/20	19/25	10/9	23/28	6/6

Data Collection and Transcription

7

Audio

POS tags

CFG features

Syntactic complexity features

Content-Free Features

NER tags

Vocabulary richness features

SUBTL scores

Consecutive utterance similarity scores

Acoustic features

Modeling and Feature Selection

Models:

- RandomForest
- XGBoost

Feature selection:

- ANOVA F-values
- mutual information (MI) values
- RF-based frequency

- •
- . .
- •
- •

Result

- Results averaged across 1000 stratified 5-fold cross-validation runs of Random Forest (RF)
- Results are maximized using the top eight features determined via RF-based feature selection

Target Variable	#Feature	Acc.	ROC-AUC
	Verbal fluency (baseline)	0.80	0.70
	2	0.67	0.59
CSF tTau/Aß	4	0.71	0.61
42	8	0.84	0.72
	16	0.83	0.71
	Verbal fluency (baseline)	0.72	0.68
CSF	2	0.71	0.68
Αβ ₄₂ /Αβ ₄₀	4	0.72	0.68
	8	0.75	0.70
	16	0.71	0.63
	Verbal fluency (baseline)	0.54	0.43
Plasma	2	0.66	0.64
pTau ₁₈₁	4	0.66	0.65
	8	0.73	0.71
	16	0.74	0.70

Feature Analysis

- For tTau/A β_{42} , the most predictive features are **acoustic**
- Lexical and context-free grammar features are commonly selected across the $A\beta_{42}/A\beta_{40}$ and pTau
- pTau and tTau/Aβ₄₂ are positively associated with the **acoustic** feature pause ratio

CSF tTau/A β_{42} target variable with RF features. Plasma pTau₁₈₁ target variable with RF features.

Demographic Variables Analysis

Takeaway

Shahla Farzana, Edoardo Stoppa, Alex Leow, Tamar Gollan, Raeanne Moore, David Salmon, Douglas Galasko, Erin Sundermann, Natalie Parde. SLaCAD: A Spoken
 Language Corpus for Early Alzheimer's Disease Detection. To appear in the Proceedings the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, May 20-25, Torino, Italy, 2024.

- **SLaCAD**, a novel spoken language corpus
 - Wide range of **clinical biomarkers**
 - Cognitive status from preclinical AD to AD pathology
- Findings are encouraging; positive results motivate future exploration
- Speech and language biomarkers emerged
 - Sensitive to both AD pathology and **preclinical AD!**

Thank You

Acknowledgements

- Creation of SLaCAD was funded in part by a seed grant from the University of California San Diego's Alzheimer's Disease Research Center.
- Authors Shahla Farzana and Natalie Parde were partially funded by the NSF under Grant No. 2125411. Any opinions, findings, and conclusions or recommendations are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Authors

Shahla Farzana: <u>sfarza3@uic.edu</u> Natalie Parde: <u>parde@uic.edu</u> edoardo Stoppa: <u>estopp2@uic.edu</u> Alex Leow: <u>weihliao@uic.edu</u> Tamar Gollan: <u>tgollan@health.ucsd.edu</u> Raeanne Moore: <u>r6moore@health.ucsd.edu</u> David Salmon: <u>dsalmon@health.ucsd.edu</u> Douglas Galasko: <u>dgalasko@health.ucsd.edu</u> Erin Sundermann: <u>esundermann@health.ucsd.edu</u>

https://nlp.lab.uic.edu

Backup Slides

Association of top 8 selected features of tTau/Aβ42 variable with sex.

.

Association of top 8 selected features of Aβ42/Aβ40 variable with sex.

•

Association of top 8 selected features of **pTau181** variable with *sex*.

.

ROC-AUC

ROC-AUC metric of the standard cognitive tests in predicting the target variables related to preclinical AD.

