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Contextual Images from Long-form Text
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Long Text
Image



Contextual Images from Long-form Text
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The Department of Justice and Public Safety in the Canadian province of New 

Brunswick was formed when Premier Brian Gallant restructured government 

departments in 2016. …. Largely created from the former Department of the 

Solicitor General, …. The department is headed by a Minister of Justice and 

Public Safety who also continues to hold the title of Solicitor General of New 

Brunswick (French: Ministre de la Sécurité Publique et Solliciteur Général).

Long Text
Image



Contextual Images from Long-form Text
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Large Language 

Model (LLM)
Text-to-Image 

Model (TIM)

Long Text
Image



LLM

❑ Can process large chunk of text

❑ Can generate coherent text given suitable prompt (and sometimes a few examples)

❑ Can not generate image

TIM 

❑ Can generate image conditioned on concise text prompt

❑ Can not process large chunk of text

❑ Can not generate text

❑ Lack the strong reasoning capability like LLMs

LLM vs TIM
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Motivations

❑ Scopes of research:

❑ Lack of open-sourced reliable systems for image generation from long-form text.

❑ Limited work on how to evaluate such systems.

❑ Applications:

❑ General: Wikipedia contribution, story writers

❑ Industrial: Can be modified to fit various use cases on smart displays
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Related Works

● Synthesizing multimodal content.
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[1] Xu, Peng, et al. "Lvlm-ehub: A comprehensive evaluation benchmark for large vision-language models." arXiv preprint arXiv:2306.09265 (2023).

*Table from [1]

More recent models: ImageBind, Multimodal-GPT, KOSMOS-2 etc.



Related Works

● Generating Images from Text

○ GANs

■ Conditional GAN, multi-stage GAN, attention GAN, cross-modal contrastive GAN, VQGAN etc.

○ Transformer-based decoders

■ Cogview, Maskgit etc.

○ Diffusion models

■ Models from Stable diffusion family, GLIDE etc.
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Related Works

● Generating Images from Long-form Text

○ GILL [2]

■ Integrates LLM with TIM

■ Do not focus on longer text input.
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[2] Koh, Jing Yu, Daniel Fried, and Ruslan Salakhutdinov. "Generating images with multimodal language models." arXiv preprint 

arXiv:2305.17216 (2023).



Related Works

● Generating Images from Long-form Text

○ GILL [2]

■ Integrates LLM with TIM

■ Do not focus on longer text input.

○ CM3 [3]

■ Requires restructuring all tasks in HTML format.

■ Model and codes not publicly available
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[2] Koh, Jing Yu, Daniel Fried, and Ruslan Salakhutdinov. "Generating images with multimodal language models." arXiv preprint 

arXiv:2305.17216 (2023).

[3] Aghajanyan, Armen, et al. "Cm3: A causal masked multimodal model of the internet." arXiv preprint arXiv:2201.07520 (2022).

LLM: OPT-6.7B

Visual Encoder: CLIP ViT-L

TIM: SD v1.5
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Dataset
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Dataset Description
#English 

Instances

WIT Wikipedia sections along with images, precursor of WikiWeb2M ~5.4M

WikiWeb2M A superset of WIT with more content ~11.7M

MMC4 Common Crawl text data with interleaved images ~101.2M

CC3M A collection of image-caption pairs ~3.37M

MS-COCO Human annotated image caption pairs ~330k

VisDial Visual dialogue data, contains an image with 10 Q/A pairs ~133k

LAION-400M CLIP-filtered image-text pairs, with CLIP embeddings ~400M

LAION-5B A superset of LAION-400M ~5.85B



Dataset
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Dataset Description
#English 

Instances

WIT [4] Wikipedia sections along with images, precursor of WikiWeb2M ~5.4M

WikiWeb2M A superset of WIT with more content ~11.7M

MMC4 Common Crawl text data with interleaved images ~101.2M

CC3M A collection of image-caption pairs ~3.37M

MS-COCO Human annotated image caption pairs ~330k

VisDial Visual dialogue data, contains an image with 10 Q/A pairs ~133k

LAION-400M CLIP-filtered image-text pairs, with CLIP embeddings ~400M

LAION-5B A superset of LAION-400M ~5.85B

[4] Srinivasan, Krishna, et al. "Wit: Wikipedia-based image text dataset for multimodal multilingual machine learning." Proceedings of 

the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021.



Dataset

18[7] Srinivasan, Krishna, et al. "Wit: Wikipedia-based image text dataset for multimodal multilingual machine learning." Proceedings of 

the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021.

Dataset Description
#English 

Instances

WIT [4] Wikipedia sections along with images, precursor of WikiWeb2M ~5.4M

WikiWeb2M A superset of WIT with more content ~11.7M

MMC4 Common Crawl text data with interleaved images ~101.2M

CC3M A collection of image-caption pairs ~3.37M

MS-COCO Human annotated image caption pairs ~330k

VisDial Visual dialogue data, contains an image with 10 Q/A pairs ~133k

LAION-400M CLIP-filtered image-text pairs, with CLIP embeddings ~400M

LAION-5B A superset of LAION-400M ~5.85B

Includes:

• Page Title

• Section Title

• Image Caption

• Page Description

• Corresponding Image

• Page URL

• Image URL etc.



Dataset
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❑ Challenges:

1. Images are often supplementary to the page descriptions.



Dataset
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❑ Challenges:

1. Images are often supplementary to the page descriptions.

Mussels dish with Barbastathis corn salad



Dataset
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❑ Challenges:

1. Images are often supplementary to the page descriptions.

2. Not all pages are good candidates for multimodal generation.



Dataset
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❑ Challenges:

1. Images are often supplementary to the page descriptions.

2. Not all pages are good candidates for multimodal generation.

Professor Gana signature



Dataset
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❑ Challenges:

1. Images are often supplementary to the page descriptions.

2. Not all pages are good candidates for multimodal generation.

3. Lacks good image captions, often noisy or uninformative.



Dataset
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❑ Challenges:

1. Images are often supplementary to the page descriptions.

2. Not all pages are good candidates for multimodal generation.

3. Lacks good image captions, often noisy or uninformative.



Dataset
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Step 1: 

Remove non-

English 

Instances

Step 2: 

Remove 

unnecessary 

Instances

Datasets #Train #Dev #Test

WIT 37,046,386 261,024 210,166

WIT (after step 1) 5,407,014 45,405 33,070

WIT (after step 2) 359,822* 31,381 22,554

*10% of available data
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Experiments

2 Groups:

1. Zero-shot 

1. SDOPT (OPT+SD)

2. SDVicuna (Vicuna + SD)

3. GILL

2. Fine-tuning

1. GILL 

2. GILL with Vicuna
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Experiments
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Large Language 

Model (LLM)

Input Long Text 

with prompt

Summary

Image Output

Text-to-Image 

Model (TIM)

2016 restructuring of the Department of Justice and Public Safety in New 

Brunswick created … to the Department of Finance

Color code:

<Instruction> <Input> <Trigger_prompt>

2 Groups:

1. Zero-shot 

1. SDOPT (OPT+SD)

2. SDVicuna (Vicuna + SD)

3. GILL

2. Fine-tuning

1. GILL 

2. GILL with Vicuna

Summarize into one sentence that can be used as the caption of a 

corresponding image: The Department of Justice and Public Safety in the 

Canadian province of New Brunswick was formed when Premier Brian Gallant 

restructured government departments in 2016. …. Largely created from the 

former Department of the Solicitor General, …. The department is headed by a 

Minister of Justice and Public Safety who also continues to hold the title of 

Solicitor General of New Brunswick (French: Ministre de la Sécurité Publique et 

Solliciteur Général).

Answer:



Experiments
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Pretrained GILL

Input Long Text 

with prompt

The Department of Justice and Public Safety in the Canadian province of New 

Brunswick was formed when Premier Brian Gallant restructured government 

departments in 2016. …. Largely created from the former Department of the 

Solicitor General, …. The department is headed by a Minister of Justice and 

Public Safety who also continues to hold the title of Solicitor General of New 

Brunswick (French: Ministre de la Sécurité Publique et Solliciteur Général).
2 Groups:

1. Zero-shot 

1. SDOPT (OPT+SD)

2. SDVicuna (Vicuna + SD)

3. GILL

2. Fine-tuning

1. GILL 

2. GILL with Vicuna
Image Output



Experiments
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Fine-tuned GILL

Input Long Text 

with prompt

The Department of Justice and Public Safety in the Canadian province of New 

Brunswick was formed when Premier Brian Gallant restructured government 

departments in 2016. …. Largely created from the former Department of the 

Solicitor General, …. The department is headed by a Minister of Justice and 

Public Safety who also continues to hold the title of Solicitor General of New 

Brunswick (French: Ministre de la Sécurité Publique et Solliciteur Général).

Image Output

2 Groups:

1. Zero-shot 

1. SDOPT (OPT+SD)

2. SDVicuna (Vicuna + SD)

3. GILL

2. Fine-tuning

1. GILL 

2. GILL with Vicuna



Image Output

Input Long Text 

with prompt

Department of Justice and Public Safety (New Brunswick)

Craft a title that succinctly summarizes the content below and produce a 

complementary image.

The Department of Justice and Public Safety in the Canadian province of New 

Brunswick was formed when Premier Brian Gallant restructured government 

departments in 2016. …. Largely created from the former Department of the 

Solicitor General, …. The department is headed by a Minister of Justice and 

Public Safety who also continues to hold the title of Solicitor General of New 

Brunswick (French: Ministre de la Sécurité Publique et Solliciteur Général).

Answer:

Experiments

4 Systems:

1. Zero-shot LLM+TIM

2. Zero-shot LLM+GILL

3. Zero-shot GILL

4. Fine-tuned GILL

31

1. Generate special image tokens

2. Align image token representation with SD text 

encoder output space

Fine-tuned GILL
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Metrics

❑ Challenges:

❑ Lack of objective metrics

❑ Lack of ground truth

❑ Context sensitivity

❑ Novelty/Authenticity

❑ Diversity

❑ Semantic relevance

❑ Fidelity/quality

❑ Subjectivity/Human bias
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Metrics

❑ Semantic Similarity :

❑ CLIP-similarity

❑ BLIP-2 similarity

❑ S-BERT similarity

❑ BERTScore

❑ Rouge-1,2,L

❑ Stylistic Similarity:

❑ LPIPS
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Metrics

35
*Image Caption: Downtown Phoenix from an airplane, 2011

Ground Truth Image* Generated Image

CLIP Image Encoder

0.90 

(Cosine similarity)

CLIP Image Encoder

❑ Semantic Similarity :

❑ CLIP-similarity

❑ BLIP-2 similarity

❑ S-BERT similarity

❑ BERTScore

❑ Rouge-1,2,L

❑ Stylistic Similarity:

❑ LPIPS



Metrics
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*Image Caption: Downtown Phoenix from an airplane, 2011

Ground Truth Image* Generated Image

BLIP-2

0.90 

(S-BERT Similarity)

❑ Semantic Similarity :

❑ CLIP-similarity

❑ BLIP-2 similarity

❑ S-BERT similarity

❑ BERTScore

❑ Rouge-1,2,L

❑ Stylistic Similarity:

❑ LPIPS

BLIP-2

Captiongt Captiongen



Metrics
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*Image Caption: 1838 anti-slavery token "Am I not a woman and a sister".

Ground Truth Image, x0*Generated Image, x

d0 = 0.40

❑ Semantic Similarity :

❑ CLIP-similarity

❑ BLIP-2 similarity

❑ S-BERT similarity

❑ BERTScore

❑ Rouge-1,2,L

❑ Stylistic Similarity:

❑ LPIPS
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Zero-shot Prompts

39

Three prompts were evaluated:

• Prompt 1: “Summarize into one sentence that can be used as the caption of a 

corresponding image”

• Prompt 2: “From this text snippet generate the best caption to describe a 

relevant image”

• Prompt 3: “Craft a relevant image caption that represents the given text”



Results
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Results

41

➢ SDvicuna is the best zero-shot model.

➢ GILL with Vicuna as LLM is the best fine-tuned 

model.



Presentation outline

❑ Problem Statement & Motivation

❑ Literature Review

❑ Dataset

❑ Experiments

❑ Metrics

❑ Results

❑ Qualitative Examples

❑ Summary

42



Qualitative Examples: High CLIP-similarity
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Entrance to the house Beaumont–Adams 

percussion revolver

Hector as a tropical 

depression in the western 

Pacific Ocean early on 

August 16

Reference

Generated

Reference

Generated

Reference

Generated



Qualitative Examples: Low CLIP-similarity
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Four-hour target in the emergency department 

quarterly figures from NHS England Data from 

https://www.england.nhs.uk/statistics/statistical-

work-areas/ae-waiting-times-and-activity/

Percentage of seats 

gained by each of the 

five biggest parties, and 

number of seats gained 

by smaller parties and 

independents.

Albert Finney won for his 

portrayal of Edward L. Masry 

in Erin Brockovich (2000)

Reference

Generated

Reference

Generated

Reference

Generated

Bedford Hospital / Performance
1951 Irish general 

election

Screen Actors Guild Award for 

Outstanding Performance by a Male 

Actor in a Supporting Role / Winners and 

nominees

Reference

Generated

Reference

Generated

Reference

Generated



Qualitative Examples : Low LPIPS
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Eisenhower dollar obverse design used from 

1971-1978. This particular coin is the silver 

version of the coin minted in 1974 at the San 

Francisco mint and graded MS67 by PCGS. 

Note the small "S" mint mark below the bust of 

Eisenhower but above the date digits "74"

Commemorative 

coin - obverse

Official portrait of 

Jessica Morden MP

Reference

Generated

Reference

Generated

Reference

Generated



Qualitative Examples: High LPIPS
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Reference

Generated

Reference

Generated

Reference

Generated

Dengue fever 

outbreaks

Fractal art Paracompact uniform 

honeycombs / Cyclic graphs / 

[(4,4,4,3)] family

Average annual number of DF cases 

and DHF cases reported to WHO', 

'Hindu temples feature self-similar, 

fractal-like structures, where parts 

resemble the whole.[1]

Hindu temples feature self-

similar, fractal-like 

structures, where parts 

resemble the whole.[1]

Paracompact uniform 

honeycomb



Qualitative Examples: Comparison
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Qualitative Examples: Comparison
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Summary

1. Investigated the task of contextual image generation from long-form 

text from the perspective of LLMs and TIMs. ​

2. Compared zero-shot prompting and supervised fine-tuning 

approaches for this task. ​

3. Introduced the novel BLIP-2 similarity metric to evaluate the 

semantic correctness of generated images. ​

4. Established baselines and provided insights into the strengths and 

limitations of existing models for image generation from long-form 

text. ​
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Thanks 

for your time!!!
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