Code Defect Detection using Pre-trained Language Models with Encoder-Decoder via Line-Level Defect Localization

Jimin An^{1*}, YunSeok Choi^{2*}, Jee-Hyong Lee¹

¹Sungkyunkwan University, Korea ²Hankuk University of Foreign Studies, Korea

*Equal contribution

Code Defect Detection

• The process of identifying errors, bugs, or potential issues in software code.

```
def calc_average(arr):
   total = 0
   for num in arr:
      total += num
   return total / len(arr)
```

```
>>> calc_avg([1,2,3,4])
>>> 2.5
```

Code Defect Detection

• The process of identifying errors, bugs, or potential issues in software code.

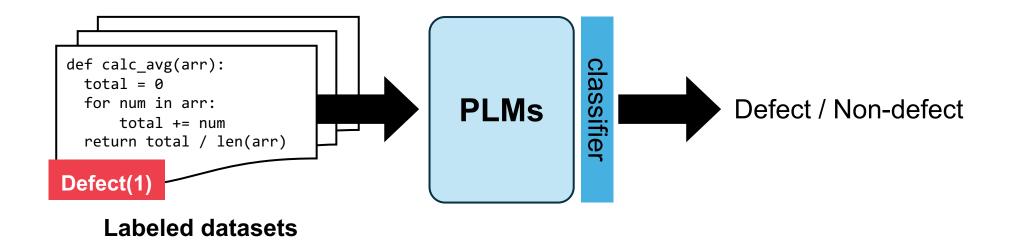
```
def calc_average(arr):
   total = 0
   for num in arr:
       total += num
   return total / len(arr)

>>> calc_avg([1,2,3,4])
>>> calc_avg([])
In line 5, ZeroDivisionError

Error
```


Code Defect Detection

- The process of identifying errors, bugs, or potential issues in software code.
- Identifying these defects is important to improve the quality of the overall SW.


```
def calc_average(arr):
   total = 0
   for num in arr:
     total += num
   return total / len(arr)

>>> calc_avg([1,2,3,4])
>>> calc_avg([])
In line 5, ZeroDivisionError

Error
```

Defect Detection on Pre-trained Language Models(PLMs)

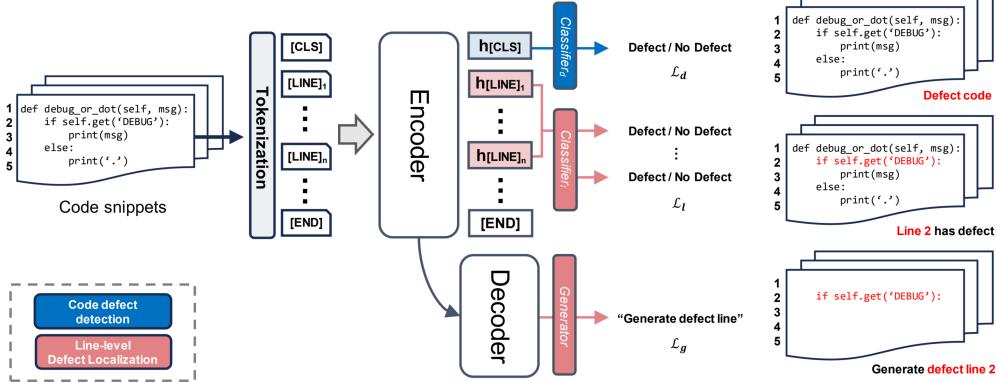
- Fine-tuned on labeled datasets where code are tagged as either containing defects or not.
- Most PLMs focused solely on classifying whether the code has defects or not.

Defect Detection on Pre-trained Language Models(PLMs)

- Fine-tuned on labeled datasets where code are tagged as either containing defects or not.
- Most PLMs focused solely on classifying whether code has defects or not.

Need a more analyzable and
Explainable Approach!

→ Line-Level Defect Localization

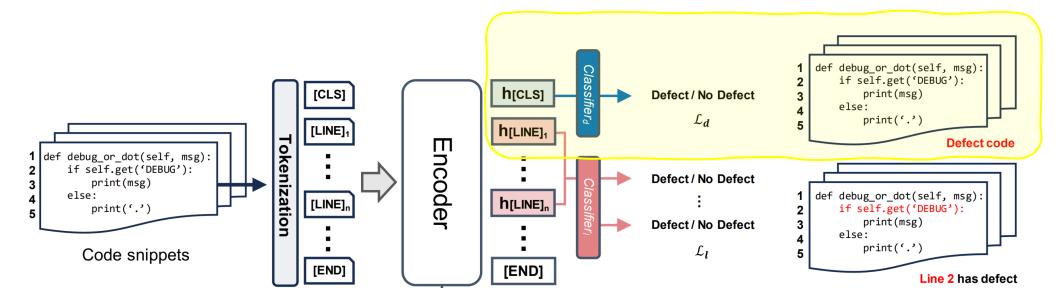

Defect(1)

Labeled datasets

Overview of Proposed Methods

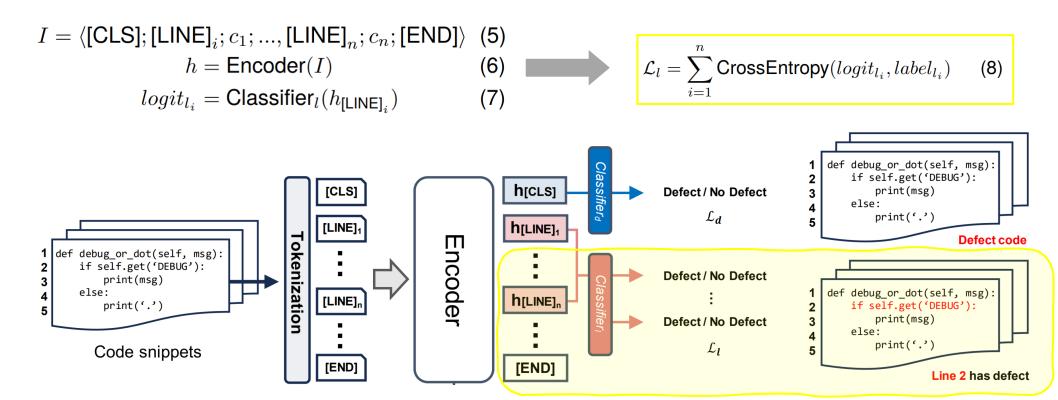
Utilizes Encoder and Decoder of PLMs for code defect detection

- 1) Code defect detection
- (2) Line-level defect Localization

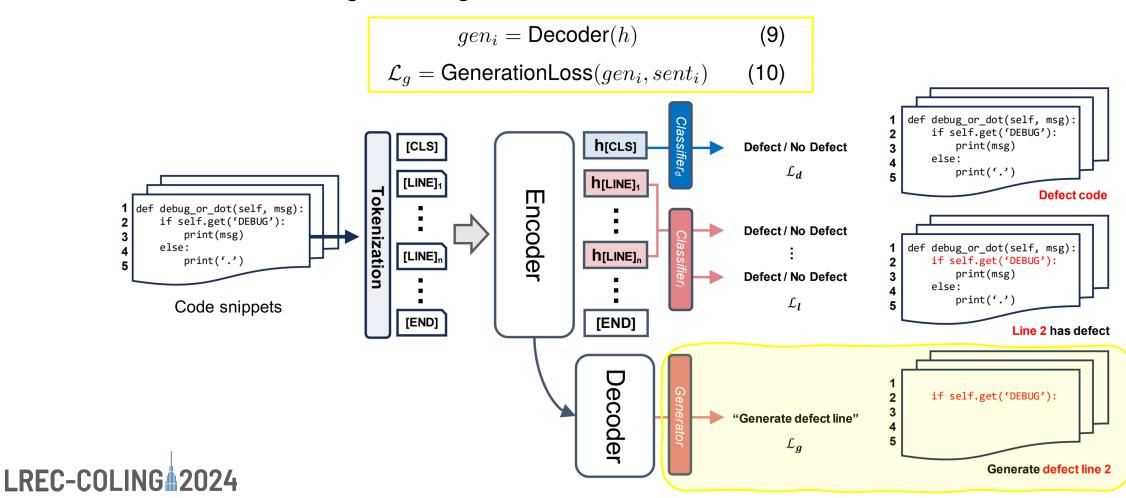


1) Code defect detection

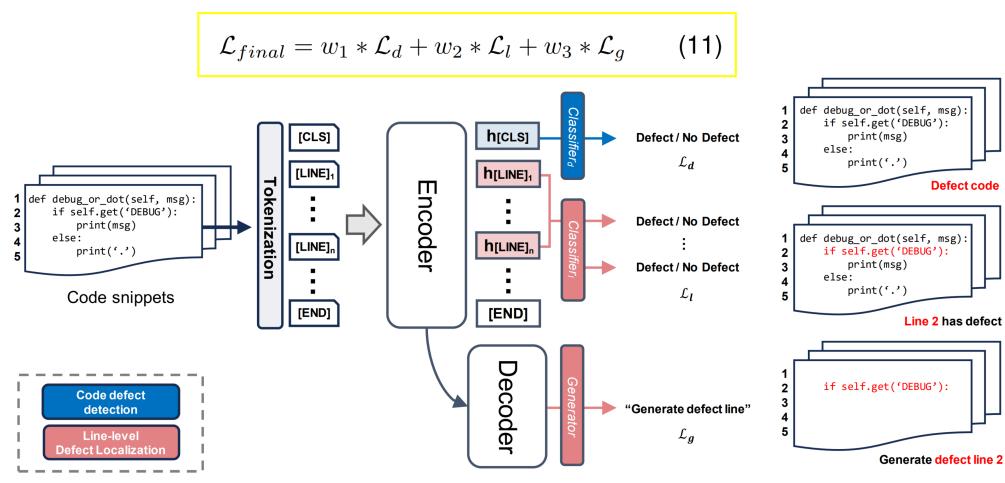
Use the encoder of PLMs with the primary goal of classifying code defect detection.


```
I = \langle [\mathsf{CLS}]; \mathsf{C}; [\mathsf{END}] \rangle (1) h = \mathsf{Encoder}(I) (2) \mathcal{L}_d = \mathsf{CrossEntropy}(logit_d, label_d) (4)
```

 $logit_d = \mathsf{Classifier}_d(h_{[\mathsf{CLS}]})$ (3)


(2) Line-level defect localization

Identifying the specific locations of defects within the code, classifying defective lines on a line-by-line basis.



(2) Line-level defect localization

Conduct the task of generating defective lines in the decoder for line-level localization.

Unified Multi-task Training

Experiments Setup

4 benchmark datasets

- Devign
- Variable-Misuse(VM)
- Wrong Binary Operator(WBO)
- Swapped Operand(SO)

Baseline

- 3 Encoder Decoder-based PLMs: CodeT5, CodeT5+, UniXcoder
- 2 Encoder-based PLMs: CodeBERT, CuBERT

Main Result

Comparison of our proposed method with the baseline models

Datasets	Devign		VM		WBO		SO	
Models	Acc.	F1.	Acc.	F1.	Acc.	F1.	Acc.	F1.
CuBERT (Kanade et al., 2020)	_	-	94.04	-	89.90	-	92.20	_
CodeBERT (Feng et al., 2020a)	63.73	51.51	93.21	93.03	90.66	90.27	91.06	90.77
CodeT5 (Wang et al., 2021a)	62.87	58.39	93.82	93.74	88.12	87.75	91.78	91.70
CodeT5+ (Wang et al., 2023)	63.40	62.59	93.28	93.21	89.08	88.62	92.70	92.61
UniXcoder (Ahmad et al., 2021)	63.18	47.57	93.95	93.85	90.35	90.11	93.73	93.66
CodeT5 (ours)	65.44	62.68	95.43	95.38	90.53	90.29	93.88	93.80
CodeT5+ (ours)	<u>64.91</u>	63.97	95.08	95.02	<u>91.56</u>	<u>91.35</u>	93.69	93.62
UniXcoder (ours)	64.29	58.37	<u>95.36</u>	<u>95.30</u>	92.49	92.31	94.22	94.16

Ablation Study

Three learning processes of our proposed method

(1) Code Defect detection in Encoder: $\mathcal{L}_d = \text{CrossEntropy}(logit_d, label_d)$

(2) Line-level Defect Localization in Encoder: $\mathcal{L}_l = \sum_{i=1}^n \mathsf{CrossEntropy}(logit_{l_i}, label_{l_i})$

(3) Line-level Defect Localization in Decoder: $\mathcal{L}_g = \text{GenerationLoss}(gen_i, sent_i)$

	Devign		VM		WBO		SO	
	Acc.	F1.	Acc.	F1.	Acc.	F1.	Acc.	F1.
Baseline: (1)	62.87	58.39	93.82	93.74	88.12	87.75	91.78	91.70
Ours: (1)+(2)	63.18	<u>58.88</u>	<u>94.76</u>	94.70	89.13	88.84	92.35	92.28
Ours: (1)+(3)	<u>63.67</u>	56.01	94.12	94.06	<u>89.97</u>	89.68	92.80	92.72
Ours: $(1)+(2)+(3)$	65.44	62.68	95.43	95.38	90.53	90.29	93.88	93.80

Conclusion and Future Work

Conclusion

- We introduced a novel method for code defect detection with line-level defect localization in a unified manner.
- By segmenting the code based on lines and leveraging both the encoder and decoder of PLMs, we achieved a more detailed and interpretable defect detection mechanism.

Future work

• We plan to conduct research on an integrated model that simultaneously performs code defect detection and defect repair based on line-level defect information.

Thank you:)

