Code-Mixed Probes Show How Pre-Trained Models Generalise On Code-Switched Text

Frances A. Laureano De Leon Dr. Harish Tayyar Madabushi Prof. Mark Lee

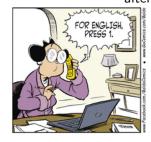
May 1, 2024

Overview

- Context
- Research questions
- 3 Background
- 4 Our work
- 5 Conclusion and Future work
- Thank you

Code-switching

linguistic phenomenon in which multilingual individuals seamlessly alternate between languages.



Code-switching

Context

What are we trying to find?

- **Detection:** can models detect code-switched text?
- **Syntax:** structure of code-switched text closer to one source language when compared to another?
- **Semantics:** meaning reps of code-switched text consistent to reps of translation in source languages?

What tools will we need?

Probes

- Auxiliary classifier linear probe trained on detection task
- Structural probe extract dependency parse
- Semantic probe train models on STS task and evaluate

Datasets

- Created a small curated dataset to compare apples to apples using techniques in De Leon, Guéniat, and Madabushi 2020
- SemEval 2020 Task 9 SentiMix, Spanglish dataset
- CALCS 2021 Shared Task: Machine Translation for Code-Switched Data
- Universal Dependencies Ancora and EWT datasets

Detection

- layer-wise exploration.
- sentence-classification: monolingual vs. CS text
- sentence classification: [CLS] token vs mean pooling
- token classification: LID task

Example of linear probe

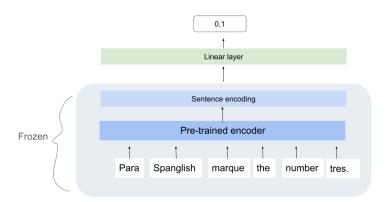


Figure: Linear probe for sentence classification

Detection

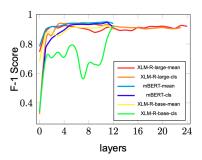


Figure: Mean F-1 Scores across layers for the sentence classification task for each of the PLMs studied.

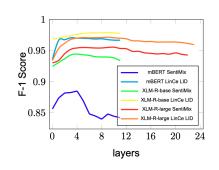


Figure: LID model mean F-1 Scores across layers for the probe classifiers.

Syntax

- structural probes trained in monolingual es and en
- graph-edit distance (cs vs en), (cs vs es) of dependency parses no gold labels
- we need parallel corpus, we use our created dataset
- ablation studies using synthetic data derived from collected examples

Research questions Background Our work Conclusion and Future work Thank you References

Example of syntax probe

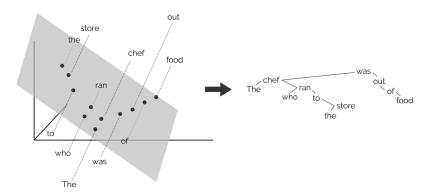


Figure: Structural probe for dependency parses of a sentence. Hewitt and Manning 2019

Example of dependency parse for each language

Pensé que se había muerto bad bunny , do n't ever do that again tuiter .

I thought bad bunny was dead , do n't ever do that again tweeter .

Pensé que se había muerto bad bunny , no vuelvas a hacer eso nunca más , tuiter .

Syntax results

lang-pair 1	lang-pair 2	Spearman statistic	
cs vs. en	cs vs. es	0.8308	
NP-CS-en vs. en	NP-CS-en vs. es	0.6876	
NP-CS-es vs. en	NP-CS-es vs. es	0.7564	
randCS vs. en	randCS vs. es	0.6983	

Table: Spearman rank for correlation between distances of code-mix and monolingual text. Results on real CS data is highlighted.

Semantics

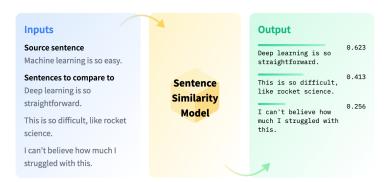


Figure: Example of STS task from

https://huggingface.co/tasks/sentence-similarity

Semantics

- testing consistency in representation of monolingual vs CS text
- fine-tune models on STS task using monolingual benchmarks
- STS of (i_{es}, j_{es}) and (i_{en}, j_{en}) similar to (i_{cs}, j_{cs})

$$sim(S_i^{l_1}, S_j^{l_2}) = sim(S_i^{cs}, S_j^l)$$
 (1)

Research questions Background Our work Conclusion and Future work Thank you References

Semantics Results

I-pair-1	l-pair-2	cosine spearman		
		mBERT	XLM-R-base	XLM-R-large
en-en	CS-CS	0.8503	0.8208	0.8256
es-es	CS-CS	0.7892	0.7655	0.7799
en-es	cs-en	0.8695	0.8656	0.8704
en-es	cs-es	0.7266	0.6947	0.7200

Table: Spearman rank statistic for the cosine similarity between language pair 1 (l-pair-1) and language pair 2 (l-pair-2).

What do these results mean?

experiments show...

- models are generalising to handle CS text even when not explicitly trained to handle CS text.
- models may be representing CS text in their own way, not necessarily aligning with popular CS linguistic theories.
- seem to capture syntactic structure and semantic meaning in CS text.
- ablation studies show that performance degrades when using synthetic CS text, naturalistic CS matters?

Going forward

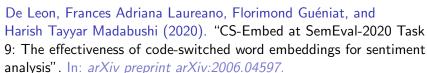
- use other language pair does it work because Spanglish? Hinglish?
- expand to using generative, decoder only models
- generate synthetic CS text from more state-of-the-art models (GPT-4)
- expanding to exploring bias in language vs models

Thank you

Thank you for listening!

Research questions Background Our work Conclusion and Future work Thank you References

Bibliography



Hewitt, John and Christopher D Manning (2019). "A Structural Probe for Finding Syntax in Word Representations". In: NAACL.