

Domain Adaptation for Dense Retrieval and Conversational Dense Retrieval through Self-Supervision by Meticulous Pseudo-Relevance Labeling

Minghan Li and Eric Gaussier mhli@suda.edu.cn, eric.gaussier@imag.fr

2: Domain Adaptation for Dense Retrieval

General problem formulation

 $RSV(q,d)_{DR} = g(q) \cdot g(d)$ or $RSV(q,d)_{DR} = cos(g(q),g(d))$

Limitation Recent studies like BEIR [1] showed that dense retrieval [2] models trained on a source domain generalize less well than traditional models as BM25 and interaction-based models on out-of-distribution (OOD) data sets.

[1] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. "BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models". In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). 2021
[2] Karpukhin, Vladimir, et al. "Dense Passage Retrieval for Open-Domain Question Answering." Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.
[3] Khattab, O., & Zaharia, M. (2020, July). Colbert: Efficient and effective passage search via contextualized late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval (pp. 39-48).

Figure: dense retrieval, figure from [3]

Related Work

- Query generation approaches [3,4,5]: a large sequence-to-sequence (seq2seq) model is used to generate queries for target domain data. This seq2seq model is trained on source domain.
- Alternative strategies: MoDIR [6] train a domain classifier that distinguishes source and target domains. The dense retrieval encoder is then trained in an adversarial manner to learn domain-invariant representations.
 - The results vary from one data set to the other, with sometimes important improvements and sometimes marginal gains or losses.

[3] Ji Ma, Ivan Korotkov, Yinfei Yang, Keith Hall, and Ryan McDonald. "Zero-shot Neural Passage Retrieval via Domain-targeted Synthetic Question Generation". In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021, pp. 1075–1088

[4] Davis Liang, Peng Xu, Siamak Shakeri, et al. "Embedding-based zero-shot retrieval through query generation". In: arXiv preprint arXiv:2009.10270 (2020)

[5] Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. "GPL: Generative Pseudo Labeling for Unsupervised Domain Adaptation of Dense Retrieval". In NAACL2022, July 2022, pp. 2345–2360

[6] Xin, Ji, et al. "Zero-shot dense retrieval with momentum adversarial domain invariant representations." arXiv preprint arXiv:2110.07581 (2021).

Pseudo-Relevance Labeling for Dense Retrieval

Pseudo-Positive Sampling

- We simply propose here to consider, for each query, the top k documents obtained with the combination BM25&T53B, in which T53B [7] serves as a re-ranker, as relevant (or positive).
- T53B, which has been shown to be a good zero-shot IR model in [8], is fine-tuned on MS MARCO collection.

T53B

- [7] proposed to use T5 as an interaction-based model for information retrieval by relying on the following input representation:
 Query: [q] Document: [d] Relevant: true or false
- The relevance score for inference is then determined by the likelihood of producing "true":

$$RSV(q,d)_{T5} = softmax(Z_{true})$$
$$= \frac{e^{Z_{true}}}{e^{Z_{true}} + e^{Z_{false}}},$$

[7] Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." The Journal of Machine Learning Research 21.1 (2020): 5485-5551.
[8] Nogueira, Rodrigo, Zhiying Jiang, and Jimmy Lin. "Document ranking with a pretrained sequence-to-sequence model." arXiv preprint arXiv:2003.06713 (2020).

What We Have Now?

All documents

- in the dataset
- Global negative sampling

BM25 list

- Fast Recall the relevant docs in the dataset
- Bm25 hard negative sampling

T53B Model, reranking list

- A reranker model, can rerank BM25 top N list
- Pseudo-positive sampling

Dense Retrieval Model

SimANS hard negative sampling

Global and BM25 Hard Negative Sampling

Generating Positive-Negative Training Pairs on the Target Domain

Fig. 4.1.: The overall pipeline of generating self-supervised data with BM25 hard negative sampling for pseudo-relevance labeling.

Global Negative vs BM25 Hard Negative

SimANS Hard Negative Sampling

Generating Positive-Negative Training Pairs on the Target Domain

$$p_i \propto \exp(-a(s(q, d_i) - s(q, d^+) - b)^2), \forall d_i \in \mathcal{D}^-, (1)$$

Figure 2: The overall pipeline of generating selfsupervised data with meticulous pseudo-relevance labeling using SimANS hard negative sampling. Kun Zhou, Yeyun Gong, Xiao Liu, et al. "SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval". In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track. Abu Dhabi, UAE: Association for Computational Linguistics, Dec. 2022, pp. 548–55 Table 2: Domain adaptation result of FiQA, BioASQ and Robust04 (during training only use train queries).

Results

Method	FiQA	BioASQ	Robust04	Avg.	
Zero-Shot Models					
D-BERT	26.7	53.6	39.1	39.8	
BM25 (Anserini)	23.6	73.0	44.4	47.0	
Re-Ranking with Cross-Encoders (Upper Bound)					
BM25 + CE	33.1	72.8	45.8	50.6	
BM25 + T53B	39.2	76.1	51.8	55.7	
Previous Domain Adaptation Methods					
UDALM	23.3	33.1	-	-	
MoDIR (ANCE)	29.6	47.9	-	-	
Pre-Training based: Target \rightarrow D-BERT					
SimCSE	26.7	53.2	-	-	
ICT	27.0	55.3	-	-	
TSDAE	29.3	55.5	-	-	
Generation-based (Previous SOTA)					
QGen	28.7	56.5	-	-	
GPL	32.8	62.8	41.9	45.8	
TSDAE + GPL	34.4	61.6	40.7	45.6	
Proposed: T53B, Global Random Neg					
DoDress-T53B (D-BERT)	27.3	52.9	40.5	40.2	
DoDress-T53B (GPL)	33.0	62.0	43.2	46.1	
Proposed: T53B, BM25 Hard Neg					
DoDress-T53B (D-BERT)	30.4	58.6	41.6	43.5	
DoDress-T53B (GPL)	34.2	64.7	43.3	47.4	
Proposed: T53B, SimANS Hard Neg					
DoDress-T53B (D-BERT)	31.0	60.6	43.6	45.1	
DoDress-T53B (GPL)	34.9	65.3	45.5	48.6	

8

2: Domain Adaptation for Conversational Search

Conversational document search, which is to find relevant documents from collections of documents in response to user queries in a conversational context, is often referred to as "conversational search" as documents are the typical output generated by the system.

Figure 4: An example of conversational search queries.

Challenges

- Conversations exhibit contextualization, conciseness, and reliance on prior knowledge, presenting challenges for search systems in accurately understanding information needs
- More ambiguous, often containing references and omissions from previous turns
- Data scarcity, especially DR models require large amount of data

Related Work

ConvDR

 Learning from an well trained ad hoc dense retriever as teacher, to mimic the teacher embeddings on oracle reformulated queries on CANARD

CQE

 Use the conversational queries and human rewritten queries in the CANARD for the target datasets (documents)

Fig. 5.3.: After generating pseudo-labeling data, now do domain adaptation for the dense retrieval model for target conversational search corpus. Now the encoders of the dense model (pre-trained on MS MARCO) are no longer shared, and the query encoder is trained to generate whole representation of the conversation (concatenated, not rewritten by T5-Large, since for fast online search).

While these approaches still face domain gaps in the training data.

Pseudo-Relevance Labeling for Conversational Dense Retrieval

Figure: The T5-Large rewrites the conversational query to a human language style sentence. Then for each turn, the rewritten query is used for generating pseudo-labels, where the steps are similar as dense retrieval's.

Result

Table 4: Domain adaptation result of CAsT-19.

	model	nDCG@3 (%)			
	Zero-Shot Models				
	BERT-dot-v5(current)	33.4			
BERT-dot-v5(concatenation)		27.2			
BERT-dot-v5(T5Rewrite)		53.2			
BERT-dot-v5(Human) (Upper Bound)		58.9			
BM25(Human)		37.0			
	BM25(T5Rewrite)	31.2			
	Re-Ranking with Cross-Encoders				
	T5-3B rerank T5Rewrite	56.7			
Related Work					
ConvDR (BERT-dot-v5)		55.4			
CQE (BERT-dot-v5)		53.7			
	Proposed Approach				
	T53B, SimANS Neg, based on ConvDR				
	DoDress-T53B (BERT-dot-v5)	58.0			
	T53B, SimANS Neg, based on CQE				
	DoDress-T53B (BERT-dot-v5)	57.6			

Thanks!