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Limitation Recent studies like BEIR [1] showed that dense retrieval [2] models 

trained on a source domain generalize less well than traditional models as BM25 and 

interaction-based models on out-of-distribution (OOD) data sets.

Figure: dense retrieval, figure from [3]
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General problem formulation
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§ Query generation approaches [3,4,5]: a large sequence-to-sequence (seq2seq) 
model is used to generate queries for target domain data. This seq2seq model is trained on 
source domain.

§ Alternative strategies: MoDIR [6] train a domain classifier that distinguishes source and 

target domains. The dense retrieval encoder is then trained in an adversarial manner to learn 
domain-invariant representations.
§ The results vary from one data set to the other, with sometimes important improvements and 

sometimes marginal gains or losses.
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Pseudo-Positive Sampling

§ We simply propose here to consider, for each 
query, the top k documents obtained with the 
combination BM25&T53B, in which T53B [7]
serves as a re-ranker, as relevant (or positive).

§ T53B, which has been shown to be a good zero-shot IR 
model in [8], is fine-tuned on MS MARCO collection.

[7] Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." The Journal of Machine 
Learning Research 21.1 (2020): 5485-5551.
[8] Nogueira, Rodrigo, Zhiying Jiang, and Jimmy Lin. "Document ranking with a pretrained sequence-to-sequence model." arXiv
preprint arXiv:2003.06713 (2020).

T53B
• [7] proposed to use T5 as an interaction-based 

model for information retrieval by relying on the 
following input representation:

Query: [q] Document: [d] Relevant: true or false

• The relevance score for inference is then 
determined by the likelihood of producing “true”:



What We Have Now? 
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All documents
§ in the dataset
§ Global negative sampling

BM25 list
§ Fast Recall the relevant docs in the dataset
§ Bm25 hard negative sampling

T53B Model, reranking list
§ A reranker model, can rerank BM25 top N list
§ Pseudo-positive sampling

Dense Retrieval Model
§ SimANS hard negative sampling



Global and BM25 Hard Negative Sampling
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Generating Positive-Negative Training Pairs on the Target Domain

Global Negative vs BM25 Hard Negative



SimANS Hard Negative Sampling
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Generating Positive-Negative Training Pairs on the Target Domain

Kun Zhou, Yeyun Gong, Xiao Liu, et al. “SimANS: Simple Ambiguous Negatives 
Sampling for Dense Text Retrieval”. In: Proceedings of the 2022 Conference on 
Empirical Methods in Natural Language Processing: Industry Track. Abu Dhabi, 
UAE: Association for Computational Linguistics, Dec. 2022, pp. 548–55
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Conversational document search, which is to find relevant 

documents from collections of documents in response to user 

queries in a conversational context, is often referred to as 

"conversational search" as documents are the typical output 

generated by the system.

Challenges
§ Conversations exhibit contextualization, conciseness, and reliance on prior knowledge, 

presenting challenges for search systems in accurately understanding information needs

§ More ambiguous, often containing references and omissions from previous turns
§ Data scarcity, especially DR models require large amount of data
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ConvDR
§ Learning from an well trained ad hoc dense 

retriever as teacher, to mimic the teacher 

embeddings on oracle reformulated queries on 
CANARD

CQE
§ Use the conversational queries and human 

rewritten queries in the CANARD for the target 
datasets (documents)

While these approaches still face domain gaps in the training 
data.
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Figure: The T5-Large rewrites the conversational query to  a human language style sentence. Then for each turn, the rewritten query is used for 
generating pseudo-labels, where the steps are similar as dense retrieval’s.



Result
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