A Workflow for HTR-Postprocessing, Labeling and Classifying Diachronic and Regional Variation in Pre-Modern Slavic Texts

Piroska Lendvai¹, Maarten van Gompel², Anna Jouravel³, Elena Renje³, Uwe Reichel^{4,5}, Achim Rabus³, Eckhart Arnold¹

¹Dept. of Digital Humanities, Bavarian Academy of Sciences, Munich, Germany ²Digital Infrastructure, Humanities Cluster, Royal Dutch Academy of Sciences, The Netherlands ³Dept. of Slavic Languages and Literatures, University of Freiburg, Germany ⁴audEERING GmbH, Germany

⁵Hungarian Research Centre for Linguistics, Budapest, Hungary {piroska.lendvai, eckhart.arnold}@badw.de proycon@anaproy.nl

{anna.jouravel, elena.renje, achim.rabus}@slavistik.uni-freiburg.de ureichel@audeering.com

Historical NLP

- Diachronic and variational historical linguistics, DH, NLP
- To track language use and language change
- Applied use case: chronological and geographic attribution of texts written in Church Slavic (its East and South Slavic recensions)

Challenges

- Copying manuscripts in different geographic and cultural settings led to variation
- Exhibits on several linguistic levels: Grapheme variants, Morphological complexity, Dialectal variation
- Absence of gold boundary markers for words, sentences
- Presence of recognition errors (false word segments or characters)
- VERY few human domain experts for correction and labeling
- Little or no provenance labeled data

- 1 ньяхь бо оть бога всеь твожи бо
 2 доуши погыбала прасдола дожи
 3 я до съмрати не добра мадрова4 ти на цаломадрования вже отъ тебе то5 мыжник въвръме та въ хоула загте7 ла бо вгеже посъпа гъ То хо я бъ дага
 8 ди оуста плажжитиїхъ вгеже ты
 9 своямъ прадораствомъ праложи въ
 10 аполома я радгивавъ са зурилимя
 11 нь повела съвальмы олованы биті
 12 м по челюстьма глагола вмоу не вро13 дьно я прадорамо отъваштавая вадъ мко прадъ цасаремъ стояши потъведъ пачла свале садийита пра14 вадъ мко прадъ цасаремъ стояши потъведъ пачла свале садийита пра15 и отъведъ пачла свале садийита пра16 дъвавъ поулимания рече нъ лем прило17 владъчнице мога даа ясулимния:
 18 оунолена бъюзи отъ нене не пральчита са боукстия павала брата сво19 ита са боукстия павала брата сво20 его виждя бо та давиця мадря ся21 итя я м'ногя прамадрость имаштя да оуташивъши са послоушай мене и бадеши владъчица моги дай и о24 брады длатъ поставъя ти по васа грады васеа васеленый отъвашта25 въшь ме ясулични рече не отъвръгя са аурилийне тонителю я непра26 въшь ме ясулични рече не отъвръгя са аурилийне тонителю я непра27 гя са аурилийне тонителю я непра28 подобъне не праласстици рабъ бо29 га въшьныего не примышлия ми
 30 съмръти ваченъм лишити ма хота
 31
- With artefacts: word segmentation (whitespace, hyphenation)
- Sentence segmentation problematic (stanza, UDPipe) and not optimized per text temporality

Overarching research questions

- Can NLP perform downstream tasks and explain variation patterns in Church Slavic, across time and space?
- Can data-driven approaches identify or learn expert knowledge, and correct or be robust against HTR errors?

1. Workflow Start: After HTR

- Data acquisition: Manuscripts scans -> Handwritten Text recognition (HTR)
- NLP tools can be used (a) to diagnose HTR output as a feedback for recognition engines and (b) to utilize data-driven resources for correcting HTR errors
- Ecosystem: FoLiA XML proycon.github.io/folia
 - Data model and file format for linguistic annotation
 - Tooling: Converters, Tokenizer, Annotation tool, NLP tools, ...

2.1 Line-based alignment of GT and HTR

- For data diagnostics and cleaning: parallelized texts of ground truth (GT) and HTR. Currently we align texts on the manuscript line level
- Tool: sesdiff github.com/proycon/sesdiff
 - Alignment of GT-HTR in terms of Levenshtein + Character-level (abstract) edit notation
 - Enables search for editing patterns, e.g. false splits in HTR
- Tool: TextAlign clarin.phonetik.uni-muenchen.de/BASWebServices
 - Edit cost function is learned from smoothed conditional character cooccurrence probabilities
 - We can assess HTR misrecognitions and variation, motivated both on grapheme-level or phonetically

2.2 HTR correction and variation analysis

Tool: analitical

- Approximate string matching or fuzzy-matching system that can be used for spelling correction or text normalization
- Texts can be checked against a validated or corpus-derived lexicon
- Diagnostics: retrieve spelling variants
- Correction: query false splits and generate suggestions

```
авьствьно 1.0 ['vkse2cyrilcathetical'] навьствьнь 0.89 ['vkse2cyrilcathetical'] авьствьнь 0.89 ['vkse2cyrilcathetical'] навьствено 0.77 ['vkse2apostolosscribe1'] навьствень 0.72 ['vkse2apostolosscribe3'] на вьств но 0.56 ['dionisio2'] на вьсть 0.51 ['dionisio2'] на вьсть 0.51 ['dionisio2']
```



```
мню жає <--
мнюжае 1.0 ['dionisio2']
множае 0.86 ['dionisio2', 'vkse2elizabethbible']
мнюжае 0.86 ['dionisio2']
мнюжае 0.86 ['dionisio2']
множае 0.86 ['dionisio2']
===

и номоу <--
еномоу 1.0 ['vkse2suprasliensis']
ѝномоу 1.0 ['vkse2cyrilcathetical']
единомоу 0.89 ['vkse2cyrilcathetical']
ономоу 0.86 ['vkse2suprasliensis']
ономоу 0.86 ['vkse2cyrilcathetical']
```

Ground truth text bodies

Manuscript	CenturyF	Region	Place of Copy- ing	Language	Main genre	Tokens	Unique to- kens	Text snip- pets
Codex Suprasliensis	10- S	South	Eastern Old Bulgaria	Old Church Slavic; South Slavic recension	hagiographical- homiletic	65,207	18,450	4,831
Cyril of Jerusalem's Cathechetical Lec- tures	11- E 12	East	Kyivan Rus'	Old Church Slavic; South Slavic recension; Trans- mitted version used: East Slavic recension	dogmatic	62,011	20,936	4,282
Dionisio corpus (printed)	15- S 16	South	Serbia, Mace- donia	Serbian Church Slavic; South Slavic recension	liturgical	142,402	42,828	10,685
Apostolos (from the Uspensky version of the Great Menaion Reader)	16 E	East	Muscovy	Russian Church Slavic; East Slavic recension	gospel	230,660	50,302	14,058
Sluzhabnik	18 5	South	Serbia	Serbian Church Slavic; South Slavic recension	liturgical	56,785	13,197	3,350
Elizabeth Bible (printed)	18 E	East	Muscovy	Russian Church Slavic; East Slavic recension	Bible transla- tion	204,322	21,335	11,796
Methodius of Olympus: De lepra ad Sistelium	16 E	East	Kyivan Rus'	Old Church Slavic; Trans- mitted version: East Slavic recension	exegetic trea- tise	3,743	2002	259

3. Text attribution on snippet level

BERT: Domain-adapted and finetuned

- Vocabulary extension with union of the 100 most frequent words of each manuscript to the tokenizers' vocabularies
- Masked language modeling with standard BertForMaskedLM head

Task	Model	From-Pretrained	From-Adapted
manuscript	KoichiYasuoka/bert-base-slavic-cyrillic-upos	0.922 (0.004)	0.941 (0.003)
manuscript	anon-submission/mk-bert-base-macedonian-bulgarian-cased	0.935 (0.002)	0.961 (0.001)
manuscript	bert-base-multilingual-uncased	0.945 (0.002)	0.962 (0.003)
century	KoichiYasuoka/bert-base-slavic-cyrillic-upos	0.952 (0.002)	0.965 (0.001)
century	anon-submission/mk-bert-base-macedonian-bulgarian-cased	0.961 (0.001)	0.977 (0.002)
century	bert-base-multilingual-uncased	0.959 (0.001)	0.976 (0.001)
region	KoichiYasuoka/bert-base-slavic-cyrillic-upos	0.96 (0.002)	0.976 (0.001)
region	anon-submission/mk-bert-base-macedonian-bulgarian-cased	0.968 (0.001)	0.984 (0.001)
region	bert-base-multilingual-uncased	0.979 (0.002)	0.986 (0.001)

Table 2: Performance scores on the three downstream tasks on directly finetuned models (*From-Pretrained*) that we regard as baseline vs. domain-adapted and subsequently finetuned models (*From-Adapted*), in terms of Unweighted Average F-score arithmetic mean values and standard deviations (in brackets) obtained from five random seeds.

4. Labeling below text snippet level

- To make classification finer-grained: Annotation on token level
- Tool: FLAT annotation environment: Interfaces to FoLiA XML, CONLL-U, analitical corrections, text versions, ...

QuantiSlav Project Acknowledgments

Bavarian Academy of Sciences, Munich & University of Freiburg, Germany

