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Quick Summary
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◼ In this research,

• Focus on named entity correction (NEC) for automatic speech recognition (ASR)

• Present a novel NEC framework, dubbed DANCER

• DANCER leverages an efficient entity description augmented masked language 

model (EDA-MLM) to alleviate the phonetic confusion for NEC on ASR transcription

• Our EDA-MLM comprised a dense retrieval model, enabling MLM to adapt swiftly to 

domain-specific entities for the NEC task

• Experiments are conducted on a public benchmark dataset (AISHELL-1) evaluated 

the feasibility of our proposed method
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ASR Mistranscription

◼ Background

ASR TranscriptionASR SystemUser

Play bad romance by 
lady gaga

Play bad dance by 
lady gaga
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Post-correction on ASR transcripts

Introduction
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ASR Error Correction on domain-specific phrase

◼ Background

Shallow Fusion, WFST, On-the-fly Rescoring

ASR with an external language models

Inject domain-specific contexts into ASR

ASR Mistranscription

Play bad dance by 
lady gaga Deep Contextual Biasing

Named Entity Correction

1

2

3
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◼ Named Entity Correction (NEC)

Prevailing Approaches Are Phonetic Edit-distance-based (PED) Methods

• ASR systems typically mistranscribe entities to acoustically similar words

• A simple phonetic matching mechanism is effective enough to correct the 

corrupted entity

ASR Transcription

Play bad dance
by lady gaga

Pre-define 

Entity List
(from Wikipedia)

Named Entity 

Recognition

1

1. bad dance

2. lady gaga

Corrupted Entities

bad romance
…

lady gaga

Calculate 

Phonetic Similarity 

2

bad romance

3

Corrected Entity
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◼ Named Entity Correction (NEC)

Prevailing Approaches Are Phonetic Edit-distance-based (PED) Methods

• However, as the named entity (NE) list grows, the problems of phonetic 

confusion in the NE list are exacerbated

• For example, homophone ambiguities increase substantially

Pre-define Entity List
(from Wikipedia)

bad romance

bad boys 4

bad Boy Bubby

…

ASR Transcription

Play bad dance
by lady gaga

?

?
?
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◼ Named Entity Correction (NEC)

Goal (concepts of the proposed model)

In this work, we propose a novel NEC framework, dubbed DANCER

• In additional to only use the phonetic information like PED-NEC methods does:

➢ We judge the semantic relation between ASR transcription and the entity

descriptions

Pre-define Entity-Description List

bad romance

bad boys 4

…

ASR Transcription

Play bad dance
by lady gaga x

Bad Romance is a song by American 
singer Lady Gaga from …

Entity Description (from Wikipedia)

Bad Boys 4 is an upcoming American 
buddy cop action comedy …

surrounding context
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DANCER
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◼ Overview of DANCER

1.

2.

3.

4.



National Taiwan Normal University
Speech and Machine Intelligence 

Laboratory

DANCER

8

◼ Overview of DANCER

1. 2.

3.

4.

1. Corrupted Entity Detection is in charge of detecting 

mistranscribe entities
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◼ Overview of DANCER

1.

2.3.

4.

2. Phonetic-level Retriever is in 

charge of finding phonetic 

similar entity candidates to the 

corrupted entity
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◼ Overview of DANCER

1. 2.

3.

4.

3. Entity Description Augmented MLM (EDA-MLM) is in 

charge of reranking the entity candidates by their semantic 

meanings and the context of the ASR Hypothesis
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◼ Overview of DANCER

1. 2.

3.

4.

4. Entity Rejection is in charge of preventing mistakenly 

replacing named entities that are already correctly 

recognized
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◼ Overview of DANCER

1. 2.

3.

4.
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◼ Masked Language Model (MLM)

• The non-autoregressive MLM is renowned for its efficiency and capacity to 

derive rich contextual representations for an anchor mask

• However, one drawback that MLM faced with is its insufficient capacity of 

adapting and accommodating to unseen phrases
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◼ Entity Description Augmented Masked Language Model (EDA-MLM)

• Inspired by dense retrieval methods, we employ a dual-encoder architecture to 

aid MLM in retrieving external knowledge

• EDA-MLM is trained by using Contrastive Learning
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◼ Dataset – AISHELL-1 & Homophone

• AISHELL-1

• A commonly used open-source speech corpus for evaluating Chinese ASR systems

• Containing over 170 hours of Mandarin speech data

• Involved diverse domains, such as:

▪ Finance, Science and Technology, Sports, Entertainment, and News

• Homophone

• Homophone test set contains 115 highly phonetically confusing speech 

utterances, which are curated from the test set of AISHELL-1
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◼ Evaluation Metrics:

• Character Error Rate (CER)

• Named Entity Character Error Rate (NE-CER)

• Non-Named Entity Character Error Rate (NNE-CER)

• Named Entity Recall Rate (NE-Recall)

◼ Baseline methods:

• Conformer ASR model

• Phonetic Edit-distance-based Named Entity Corrector (PED-NEC)
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◼ Entity Description Construction:

• Entity List:

▪ We utilized the publicly available AISHELL-NER dataset to obtain the 

tagging information of named entities in AISHELL-1

• Entity Descriptions

▪ We utilized Chinese Wikipedia as our source of knowledge

▪ We used a given entity as the query to search for the most relevant article 

from Wiki

▪ We applied a text normalization to eliminate semi-structured data from 

the acquired article

▪ The entity description was then formed by extracting the first 100 words 

from the article
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➢ Main Results:

• Our approach, utilizing entity semantics, leads to better CER reduction for both datasets

• Our DANCER model achieved an additional CER reduction of 28.87% relatively over the PED-NEC model

➢ Impact of Incorporating Entity Rejection Mechanism:

• Slight decrease in NE recall rate

• However, this cautious process significantly reduces CER related to non-entity parts of test utterances

◼ Main Results

• Main results of our DANCER model on the AISHELL-1 and Homophone test set
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➢ DANCER consistently outperforms PED-NEC across all shot categories

➢ Zero-Shot Ability:

• EDA-MLM can adapts to unseen entities and demonstrates promising zero-shot ability

◼ Few-shot Generalization

• Analysis of few-shot generalization ability on the AISHELL-1 test set
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➢ Our proposed DANCER model can effectively leverage entity semantics to alleviate this problem

➢ There is a sizable performance gap between DANCER and the phonetic edit-distance-based NEC method 

(PED-NEC) as the entity sizes increase

◼ Impact of the Entity List Size

• Impact of the named entity list size on AISHELL-1 test set
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Conclusion and Future Work

◼ In this research,

◼ As to future work,

• Proposed a novel method (i.e., DANCER) for NEC

• We leverages entity descriptions to provide additional information that helps mitigate 

the problems of phonetic confusion incurred by ASR

• We plan to explore alternative entity modeling regimes, such as graph-based 

modeling

• Incorporate the NE list ahead of time into the corrupted entity detector to reduce 

the search space
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