

DANCER: Entity Description Augmented Named Entity CorrEctoR for Automatic Speech Recognition

Yi-Cheng Wang, Hsin-Wei Wang, Bi-Cheng Yan, Chi-Han Lin, Berlin Chen

National Taiwan Normal University

Quick Summary

In this research,

- Focus on named entity correction (NEC) for automatic speech recognition (ASR)
- Present a novel NEC framework, dubbed DANCER
- DANCER leverages an efficient entity description augmented masked language model (EDA-MLM) to alleviate the phonetic confusion for NEC on ASR transcription
- Our EDA-MLM comprised a dense retrieval model, enabling MLM to adapt swiftly to domain-specific entities for the NEC task
- Experiments are conducted on a public benchmark dataset (AISHELL-1) evaluated the feasibility of our proposed method

LREC-COLING

Background

ASR Mistranscription

Play <u>bad romance</u> by lady gaga

User

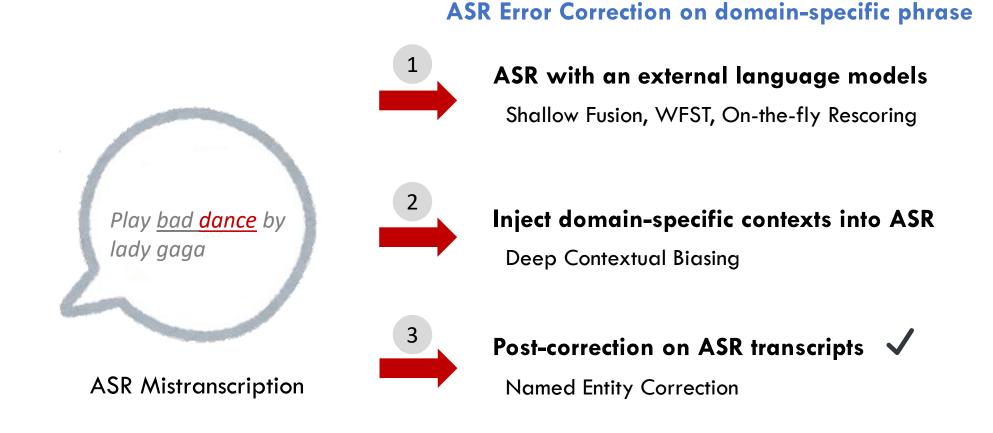
ASR System

Play <u>bad</u> <u>dance</u> by lady gaga

ASR Transcription

LREC-COLING

Background



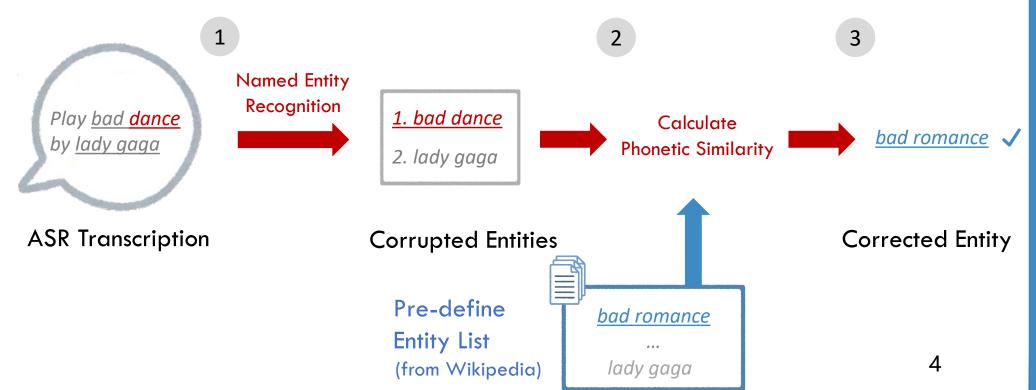
LREC-COLING

Named Entity Correction (NEC)

Prevailing Approaches Are Phonetic Edit-distance-based (PED) Methods

- ASR systems typically mistranscribe entities to acoustically similar words
- A simple phonetic matching mechanism is effective enough to correct the

corrupted entity



LREC-COLING

2024

National Taiwan Normal University

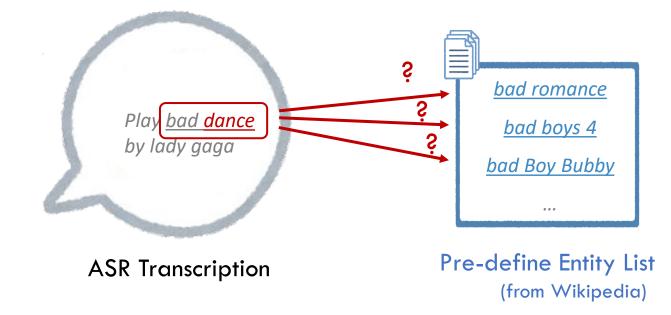
Speech and Machine Intelligence

Laboratory

Named Entity Correction (NEC)

Prevailing Approaches Are Phonetic Edit-distance-based (PED) Methods

- However, as the named entity (NE) list grows, the problems of phonetic confusion in the NE list are exacerbated
- For example, homophone ambiguities increase substantially



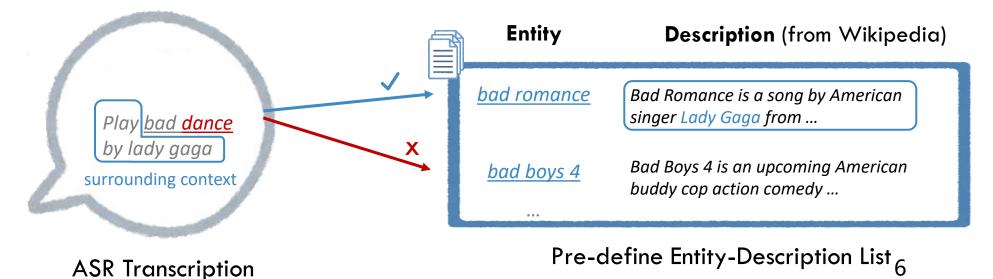
LREC-COLING

Named Entity Correction (NEC)

Goal (concepts of the proposed model)

In this work, we propose a novel NEC framework, dubbed DANCER

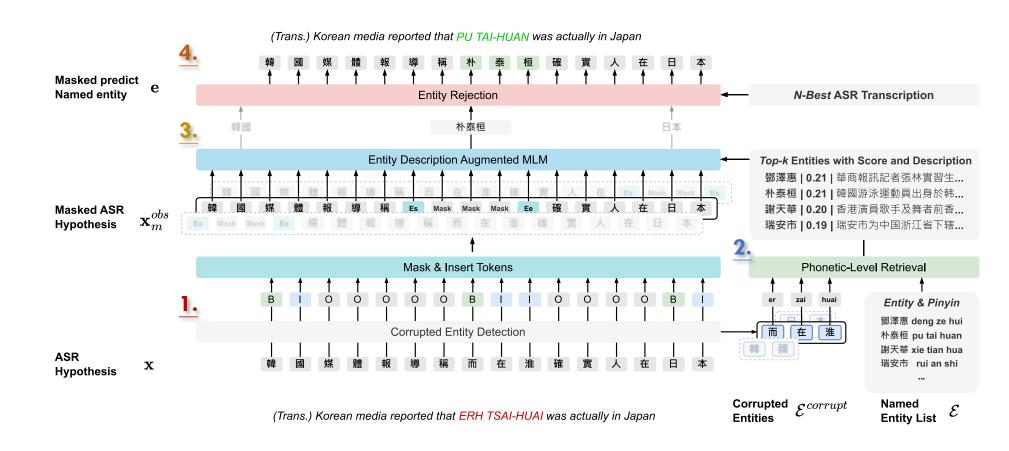
- In additional to only use the phonetic information like PED-NEC methods does:
 - We judge the semantic relation between ASR transcription and the entity descriptions



LREC-COLING

National Taiwan Normal University Speech and Machine Intelligence Laboratory

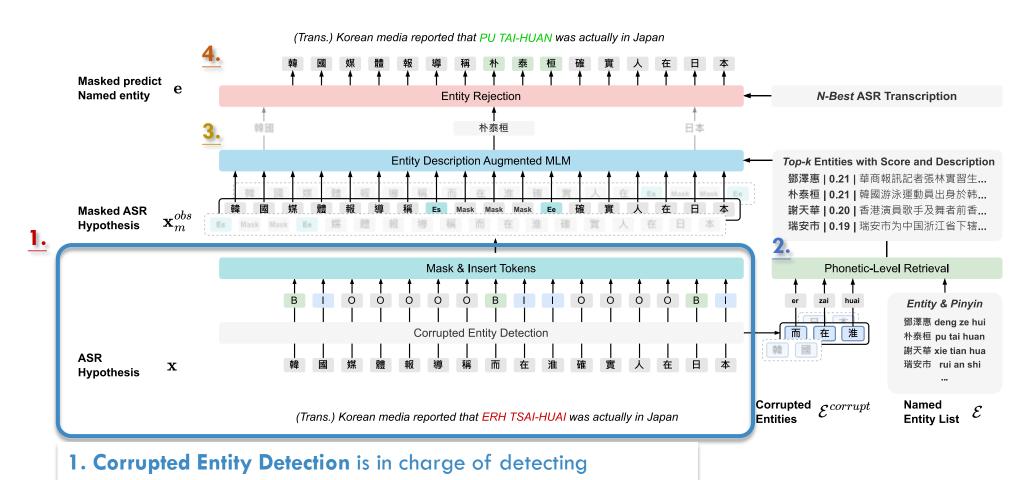
Overview of DANCER



LREC-COLING

mistranscribe entities

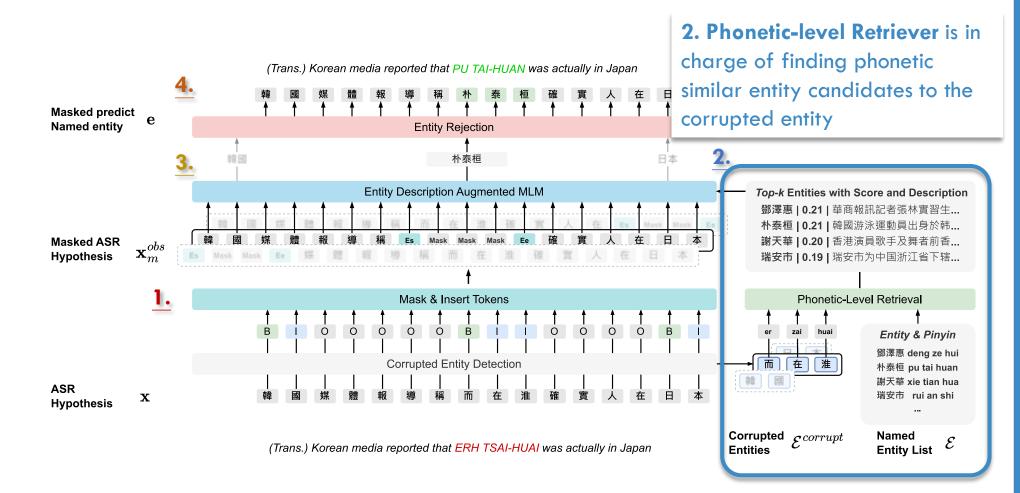
Overview of DANCER



TRANSFERENCES ICCL International Committee of Computational Linguistics

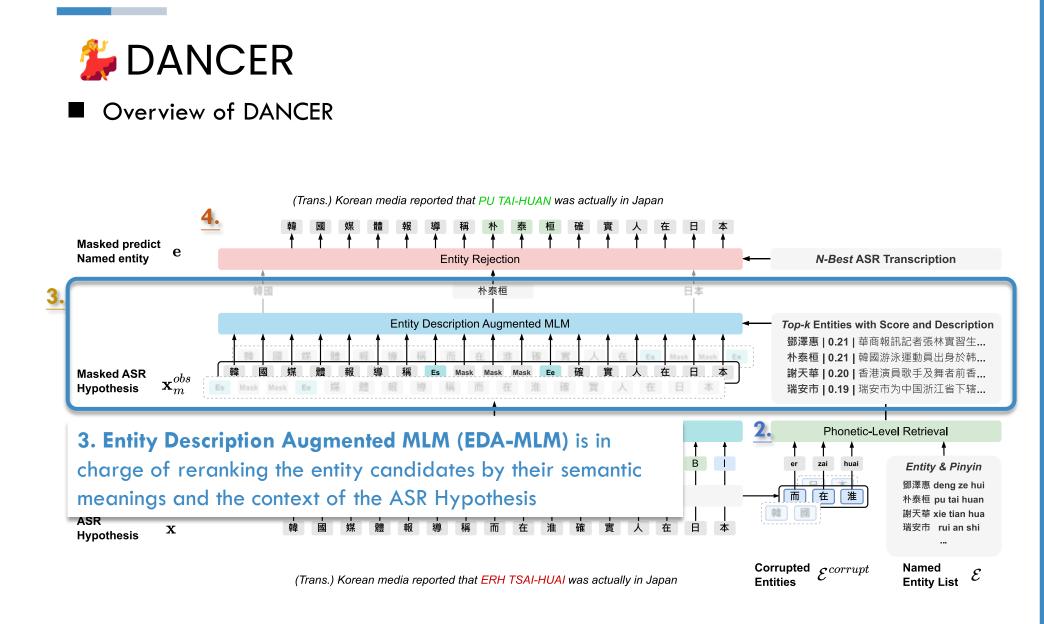
LREC-COLING

Overview of DANCER



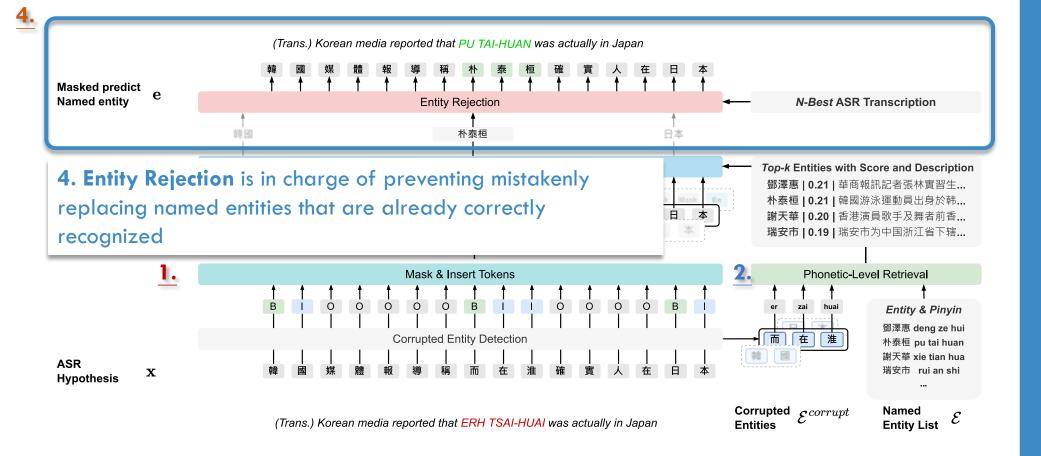
LREC-COLING

2024

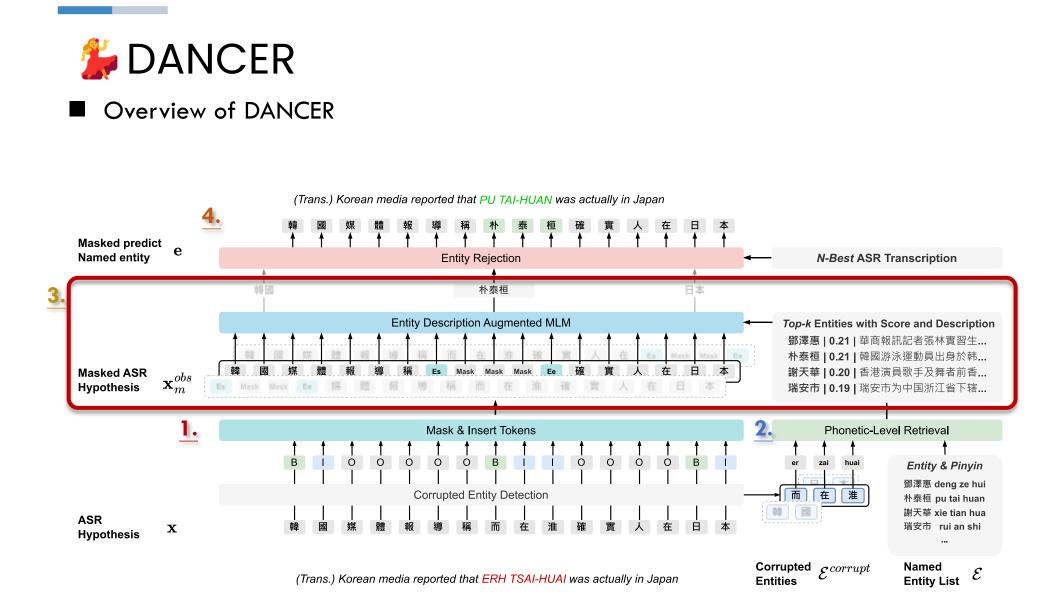


LREC-COLING

Overview of DANCER



LREC-COLING



LREC-COLING

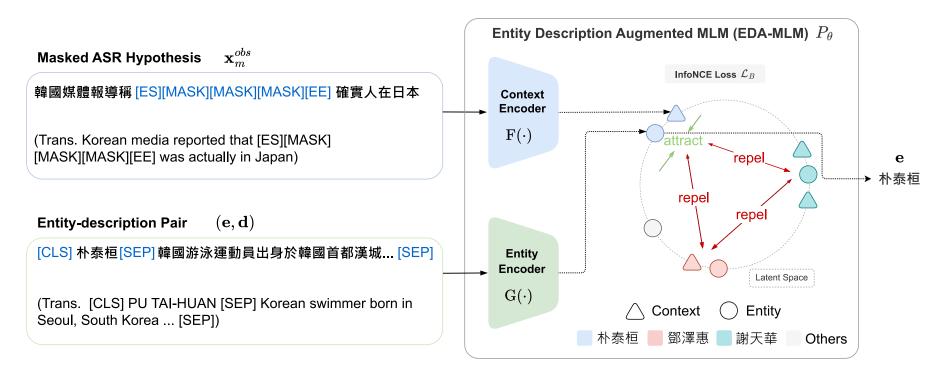
- Masked Language Model (MLM)
 - The non-autoregressive MLM is renowned for its efficiency and capacity to derive rich contextual representations for an anchor mask
 - However, one drawback that MLM faced with is its insufficient capacity of adapting and accommodating to unseen phrases

LREC-COLING

- Entity Description Augmented Masked Language Model (EDA-MLM)
 - Inspired by dense retrieval methods, we employ a dual-encoder architecture to

aid MLM in retrieving external knowledge

• EDA-MLM is trained by using Contrastive Learning



LREC-COLING

- Dataset AISHELL-1 & Homophone
- AISHELL-1
 - A commonly used open-source speech corpus for evaluating Chinese ASR systems
 - Containing over 170 hours of Mandarin speech data
 - Involved diverse domains, such as:
 - Finance, Science and Technology, Sports, Entertainment, and News
- Homophone
 - Homophone test set contains 115 highly phonetically confusing speech utterances, which are curated from the test set of AISHELL-1

LREC-COL

- Evaluation Metrics:
 - Character Error Rate (CER)
 - Named Entity Character Error Rate (**NE-CER**)
 - Non-Named Entity Character Error Rate (NNE-CER)
 - Named Entity Recall Rate (**NE-Recall**)
- Baseline methods:
 - Conformer ASR model
 - Phonetic Edit-distance-based Named Entity Corrector (**PED-NEC**)

LREC-COLING

- Entity Description Construction:
 - **Entity List:** ٠
 - We utilized the publicly available AISHELL-NER dataset to obtain the

tagging information of named entities in AISHELL-1

- **Entity Descriptions** •
 - We utilized Chinese Wikipedia as our source of knowledge
 - We used a given entity as the query to search for the most relevant article from Wiki
 - We applied a text normalization to eliminate semi-structured data from the acquired article
 - The entity description was then formed by extracting the first 100 words from the article

LREC-COL

National Taiwan Normal University Speech and Machine Intelligence Laboratory

- Main Results
 - Main results of our DANCER model on the AISHELL-1 and Homophone test set

Model	AI	AISHELL Test Set (%)				Homophone Test Set (%)			
	CER	NNE CER	NE CER	NE Recall	CER	NNE CER	NE CER	NE Recall	
Conformer	4.62	4.00	11.12	78.36	8.41	5.27	15.58	70.25	
PED-NEC	4.34	4.01	8.14	84.63	10.08	5.35	20.88	56.72	
- w/o rejection	4.90	4.65	8.22	85.61	10.67	6.05	21.42	56.14	
DANCER	4.29	4.00	7.57	85.85	7.17	5.30	11.33	79.84	
- w/o rejection	4.84	4.64	7.63	8 6 .81	7.87	6.12	12.04	78.68	

- Main Results:
 - Our approach, utilizing entity semantics, leads to better CER reduction for both datasets
 - Our DANCER model achieved an additional CER reduction of 28.87% relatively over the PED-NEC model
- Impact of Incorporating Entity Rejection Mechanism:
 - Slight decrease in NE recall rate
 - However, this cautious process significantly reduces CER related to non-entity parts of test utterances

LREC-COLING

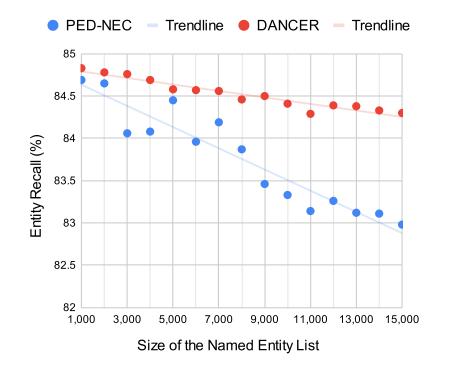
- Few-shot Generalization
 - Analysis of few-shot generalization ability on the AISHELL-1 test set

Model	Test Set NE-Recall (%)						
woder	≤ 0-shot	≤ 5-shot	≤ 100-shot				
Conformer	38.83	50.32	70.55				
PED-NEC	61.73	66.92	79.82				
DANCER	61.77	68.39	80.86				

- > DANCER consistently outperforms PED-NEC across all shot categories
- Zero-Shot Ability:
 - EDA-MLM can adapts to unseen entities and demonstrates promising zero-shot ability

LREC-COLING

- Impact of the Entity List Size
 - Impact of the named entity list size on AISHELL-1 test set



- > Our proposed DANCER model can effectively leverage entity semantics to alleviate this problem
- There is a sizable performance gap between DANCER and the phonetic edit-distance-based NEC method (PED-NEC) as the entity sizes increase

LREC-COLING

TRANSPORTED INTERNATIONAL International Committee on Computational Linguistics

Conclusion and Future Work

■ In this research,

- Proposed a novel method (i.e., DANCER) for NEC
- We leverages entity descriptions to provide additional information that helps mitigate the problems of phonetic confusion incurred by ASR
- As to future work,
 - We plan to explore alternative entity modeling regimes, such as graph-based modeling
 - Incorporate the NE list ahead of time into the corrupted entity detector to reduce the search space

Thank you for listening!

