CamemBERT-bio

Leveraging Continual Pre-training for Cost-Effective Models on French Biomedical Data

Rian Touchent

Laurent Romary Eric de la Clergerie

ALMAnaCH - Inria Paris

Motivation

Hospitals' clinical data is accessible but unstructured.

For research, information extraction from clinical reports is needed;
 CamemBERT, while skilled, is less effective for biomedical data.

• At the beginning of the work, **no public French biomedical was available**

Contribution

A new public French biomedical dataset.

 A publicly available¹ adaptation of CamemBERT for the biomedical domain, which demonstrates improved performance on NER

 continual-pretraining from a French model is proven successful, necessitating a reevaluation of previous works due to the impact of evaluation methodology

A new Corpus: biomed-fr

Corpus	Details	Size
ISTEX	Scientific literature	276 M
CLEAR	Drug leaflets	73 M
E3C	Clinical cases and leaflets	64 M
Total		413 M

Table 1: Composition of the biomed-fr corpus (in millions of words)

Other sources considered for new versions:

- Scientific articles from HAL or PudMed
- Wikipedia
- ...

biomed-fr-small:

• a 10% subset of biomed-fr from random documents.

Continual-pretraining

 We followed the methodology of Martin et al. (2020)¹ using the same hyperparameters.

• *Continual-pretraining* on biomed-fr from camembert-base.

50k steps during 39 hours on 2 Tesla V100.

Results

				CamemBERT-bio	
Style	Dataset	Score	CamemBERT	biomed-fr-small	biomed-fr
Clinical	CAS1	F1 P R	70.50 ± 1.75 70.12 ± 1.93 70.89 ± 1.78	72.94 ± 1.12 72.97 ± 0.84 72.92 ± 1.39	73.03 ± 1.29 71.71 ± 1.61 74.42 ± 1.49
	CAS2	F1 P R	79.02 ± 0.92 77.3 ± 1.36 80.83 ± 0.96	$\frac{80.00 \pm 0.32}{78.29 \pm 0.91}$ 81.80 ± 0.48	$81.66 \pm 0.59 \ 80.96 \pm 0.91 \ 82.37 \pm 0.69$
	E3C	F1 P R	67.63 ± 1.45 78.19 ± 0.72 $\overline{59.61 \pm 2.25}$	$67.96 \pm 1.85 77.41 \pm 1.01 60.57 \pm 2.32$	$69.85 \pm 1.58 \ 79.11 \pm 0.42 \ 62.56 \pm 2.50$
Leaflets	EMEA	F1 P R	$74.14 \pm 1.95 74.62 \pm 1.97 73.68 \pm 2.22$	$75.93 \pm 2.42 76.23 \pm 2.27 75.63 \pm 2.61$	$76.71 \pm 1.50 \\ 76.92 \pm 1.96 \\ 76.52 \pm 1.62$
Scientific	MEDLINE	F1 P R	$\begin{array}{c} 65.73 \pm 0.40 \\ \hline 64.94 \pm 0.82 \\ \hline 66.56 \pm 0.56 \end{array}$	$65.48 \pm 0.31 64.43 \pm 0.50 \underline{66.56 \pm 0.16}$	$68.47 \pm 0.54 \\ 67.77 \pm 0.88 \\ 69.21 \pm 1.32$

CamemBERT-bio improves upon
 CamemBERT by 2.54 F-score

 The improvement is seen across all biomedical styles evaluated

 Despite its reduced size, biomed-fr-small still surpasses
 CamemBERT, emphasizing the positive impact of corpus size.

F-scores on different biomedical named entity recognition tasks

Impact of the evaluation methodology

		EMEA			MEDLINE				
Methodology	Model	weighted-f1	macro-f1	micro-f1	seqeval-f1	weighted-f1	macro-f1	micro-f1	seqeval-f1
token-with-O	DrBERT-7GB	87.45	34.95	-	-	75.52	15.07	-	-
	CamemBERT-bio	90.37	36.27	-	-	77.89	14.82	-	-
	CamemBERT	88.33	47.45	-	ş-	76.2	11.92		-
	DrBERT-7GB	66.72	24.72	68.34	59.39	60.70	10.80	63.40	50.45
entity-without-O	CamemBERT-bio	73.53	24.15	75.05	67.58	62.04	8.695	65.44	52.9
	CamemBERT	71.85	22.71	72.93	64.23	60.95	9.413	63.47	51.75

Table 6: Performance comparison of CamemBERT, CamemBERT-bio, and DrBERT on EMEA and MEDLINE using the evaluation methodology proposed by <u>Labrak et al. (2023)</u> (*token-with-O*), along with a modified variant (*entity-without-O*). The reported scores are averaged over 10 runs.

AliBERT: A Pre-trained Language Model for French Biomedical Text (Berhe et al., BioNLP 2023)

DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains (Labrak et al., ACL 2023)

Impact of the evaluation methodology

 On the same evaluation datasets, DrBERT (Labrak et al., 2023) used a token classification metric, while we used an entity classification metric based on sequence.

 We observe significant change in performances between the two methodologies, which underscores the need for a standard unified benchmark to facilitate fair comparison.

Environmental impact

	Training time (hours)	Hardware type	Total GPU-hours	Estimation of carbon emitted (kg CO2 eq.)
DrBERT	20h	128xV100	2560	26.11
AliBERT	20h	48xA100	960	8.16
CamemBERT-bio	39h	2xV100	78	0.8

Carbon emitted estimation based on hardware and training time for different French biomedical models

- Continual-pretraining requires less energy consumption, while offering equal or better performances. This leads us to advocate for continual-pretraining as the preferred adaptation method.
- Other from-scratch approaches are estimated to emit 10 to 32 times more.

AliBERT: A Pre-trained Language Model for French Biomedical Text (Berhe et al., BioNLP 2023)

DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains (Labrak et al., ACL 2023)

Conclusion

 We introduce CamemBERT-bio, a biomedical adaptation of CamemBERT, with a 2.54 F-score point increase across our NER evaluation datasets.

 Considering the performances and the environmental impact, we advocate for continual-pretraining as the preferred approach.