

From Text to Source: Results in Detecting Large Language Model-Generated Content

Wissam Antoun Benoît Sagot Djamé Seddah

ALMAnaCH, INRIA-Paris

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101021607

Motivation

- Real-life scenarios lack knowledge of specific text generation models.
- "Cross-Model Detection" investigates if a classifier trained for one model can identify text from another without retraining.
- Aim to discern text generated by different language models without fine-

tuning or additional training.

Contribution

- Prior works limited exploration to few model sizes and families.
- Comprehensive Study. We systematically examine the impact of:
 - LLM sizes (from 125M to 70B)
 - Model Families (GPT-2, LLaMA, Pythia, OPT and others)
 - Conversational Finetuning
 - Watermarking
 - Quantization
- We study both cross-model generated text detection, and model attribution.

Methodology

Cross-Model Detection

• Objective: Evaluate whether a classifier, initially trained to distinguish text produced by a source LLM from human-written text, can also detect text generated by a target LLM

• Model Attribution

- o 5 Sub-Tasks
 - Source Model Identification
 - Model Family Classification
 - Model Size Classification
 - Quantization Detection
 - Watermark Detection

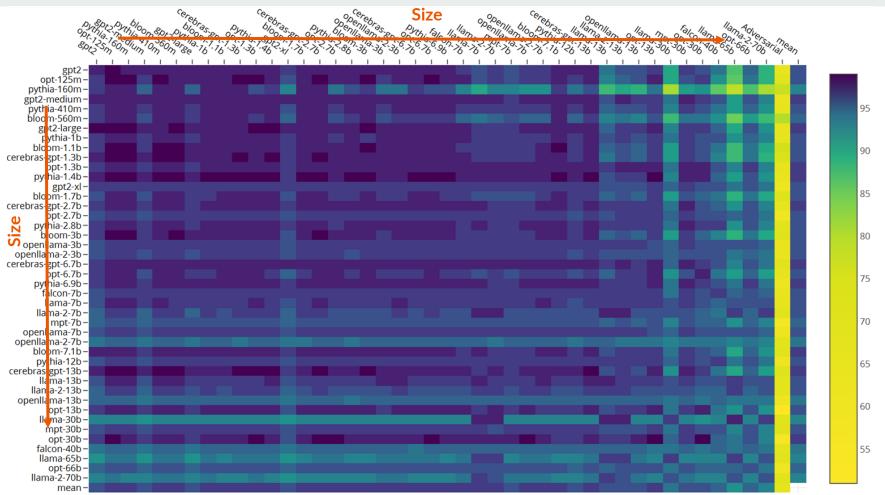
Experimental Protocol: LLM Choice

We chose the following model families and sizes for our experiments for a total of 55 models:

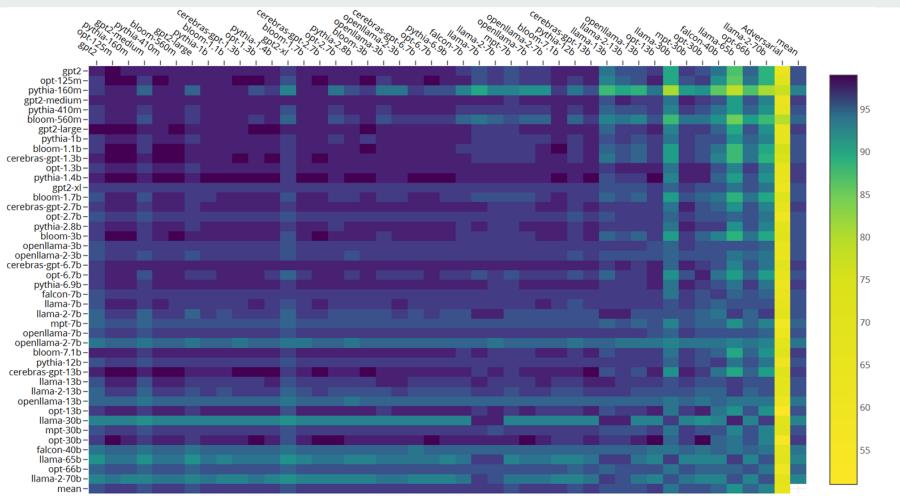
- **BLOOM** (*Scao et al.*, 2022): 560M, 1.1B, 1.7B, 3B, 7.1B.
- Cereberas-GPT (*Dey et al., 2023*): 111M, 256M, 1.3B, 2.7B, 6.7B, 13B.
- Falcon, Falcon-Instruct (Almazrouei et al., 2023; Penedo et al., 2023): 7B and 40B. Alfred-0723: 40B
- **GPT-2** (*Radford et al., 2019*): 124M, 355M, 774M, 1.5B.
- LLaMA (Touvron et al., 2023a): 7B, 13B, 30B, 65B. Vicuna-v1.3 (Zheng et al., 2023): 7B, 13B, 33B
- LLaMA-v2, LLaMA-v2-Chat (Touvron et al., 2023b): 7B, 13B, 70B.
- MPT, MPT-Chat (*MosaicML*, 2023): 7B, 30B.
- **OPT** (*Zhang et al., 2022*): 125m, 350m, 1.3B, 2.7B, 6.7B, 13B, 30B, 66B.
- **OpenLLaMA** (*Geng and Liu*, 2023): 3B, 7B, 13B.
- **OpenLLaMA-v2** (Geng and Liu, 2023): 3B, 7B.
- **Pythia** (*Biderman et al., 2023*): 70m, 160m, 410m, 1B, 1.4B, 2.8B, 6.9B, 12B

Experimental Protocol: Data Generation

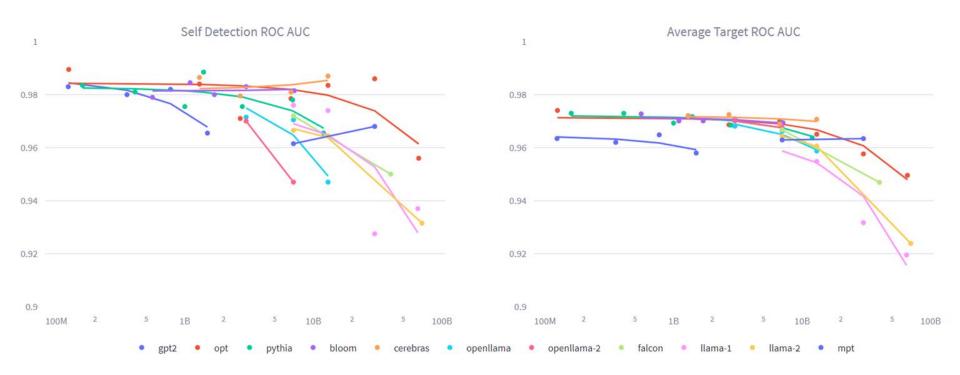
- Prompting LLMs:
 - Use first 10 words of documents from OpenWebText dataset
 - For conversational models, instruct with: "Give the best continuation of the following text:" followed by the 10 words
- Model Loading:
 - HuggingFace Text Generation Inference (TGI) server
 - o up to 4 48GB NVIDIA GPUs, with float16 precision
- **Hyperparameters** (Consistent hyperparameters across models):
 - Maximum 256 tokens per generation
 - O Beam-search size: 5
 - Repetition penalty: 1.0
 - Temperature: 1.0
 - 0 Top-k: 10, Top-p: 0.9
 - Typical sampling: 0.9
- Model Optimization:
 - 4-bit GPTQ quantization.
 - Watermark text using "red/green" token algorithm by Kirchenbauer et al. (2023)

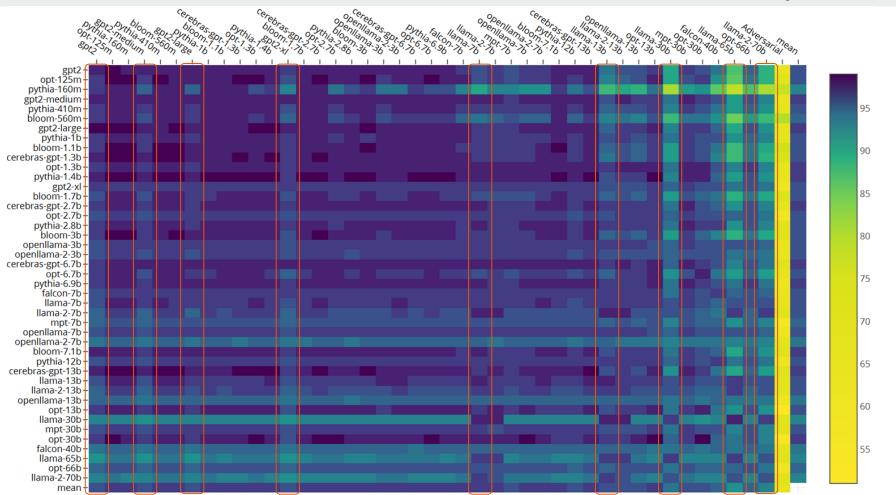

Experimental Protocol: Data Splitting and Filtering

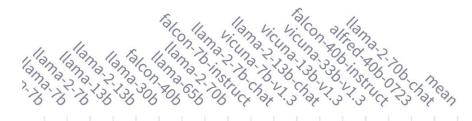
- Initial Split:
 - O 80% for training, 20% for validation.
- Filtering:
 - Remove bad generations:
 - Too short.
 - Repetitive.
 - Contain apologies or "As an Al language model" sentences.
- Fair Comparison:
 - Sample 800 training and 200 validation samples from all models.
 - Discard some models unable to generate enough valid examples.
- Negative Human-Generated Samples:
 - Sample 800 training and 200 validation samples from OpenWebText dataset for negative human-generated samples.


Experimental Protocol: Classifier

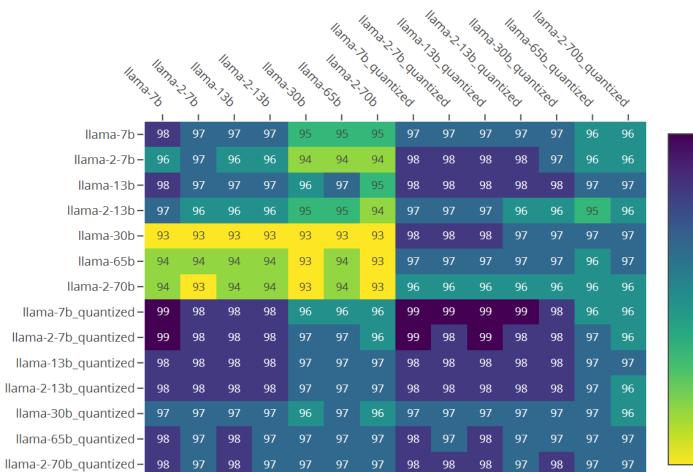
- Encoder Finetuning:
 - Popular approach for AI-generated text detection.
 - o DeBERTaV3-base.
- Training Details:
 - Batch size: 32.
 - Learning rate: 2e-5 for 5 epochs.
- Robustness Enhancement:
 - Conduct experiments with five different random seeds.
 - Average resultant AUC scores to mitigate seed-specific variations.


Results: Cross-Model Detection Results


Results: Cross-Model Detection Results - Model Size Influence

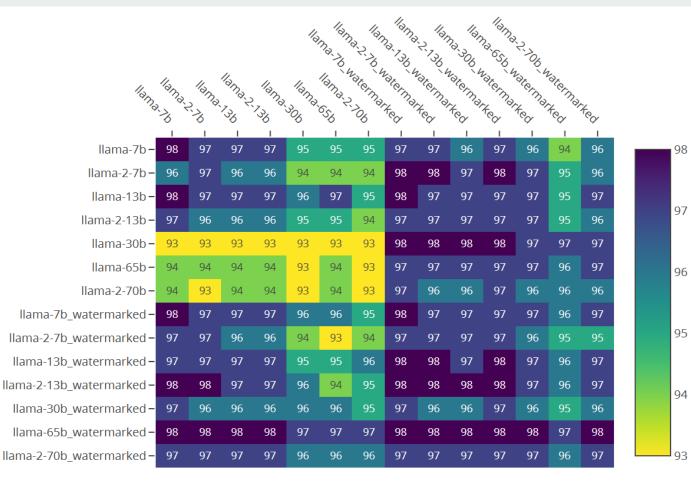

Results: Cross-Model Detection Results - Model Size Influence

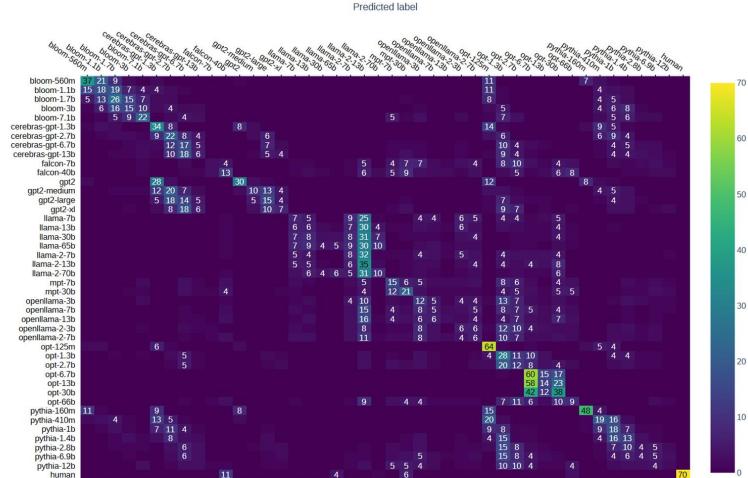
Results: Cross-Model Detection Results - Model Family Influence



Results: Cross-Model Detection Results - Conversation FT

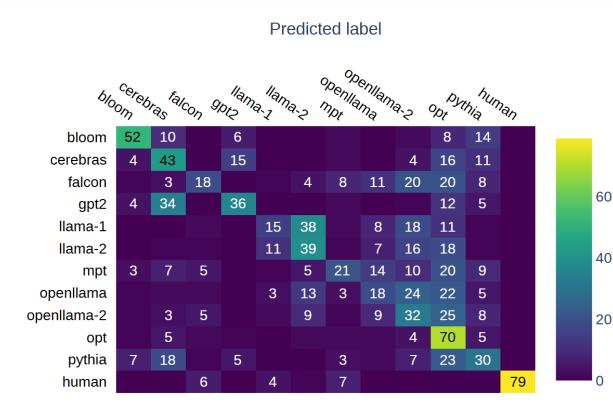
falcon-7b –	97	97	97	97	97	94	97	95	95	97	96	97	97	97	97	97	97	97	97
llama-7b –	97	98	97	97	97	95	95	95	95	98	98	98	98	98	98	98	98	98	97
llama-2-7b –	96	96	97	96	96	94	94	94	94	97	96	97	96	97	97	97	97	96	96
llama-13b –	97	98	97	97	97	96	96	97	95	98	97	98	98	98	98	98	98	98	97
llama-2-13b –	96	97	96	96	96	95	95	95	94	97	97	97	97	97	97	97	97	97	96
llama-30b –	93	93	93	93	93	93	93	93	93	93	93	93	93	93	93	93	93	93	93
falcon-40b –	95	95	95	95	95	94	95	94	94	95	95	95	95	95	95	95	95	95	95
llama-65b –	94	94	94	94	94	93	93	94	93	94	94	94	94	94	94	94	94	94	94
llama-2-70b –	94	94	93	94	94	93	93	94	93	94	94	94	94	94	94	94	94	94	94
falcon-7b-instruct –	71	74	79	76	77	69	69	71	73	99	99	99	99	99	99	99	99	98	86
llama-2-7b-chat –	66	70	72	73	71	68	66	69	71	98	98	98	98	98	98	98	98	98	84
vicuna-7b-v1.3 –	56	56	56	57	55	55	58	55	57	99	95	100	95	100	100	95	100	96	77
llama-2-13b-chat –	63	66	68	70	68	65	64	66	67	99	99	99	99	99	99	98	99	99	83
vicuna-13b-v1.3 –	59	60	61	63	62	60	60	60	61	99	98	99	98	99	99	98	99	98	80
vicuna-33b-v1.3 –	58	59	60	61	61	58	60	59	60	99	97	100	97	100	100	97	100	98	79
falcon-40b-instruct –	76	81	85	84	84	78	75	78	81	98	98	98	98	98	98	98	98	98	89
alfred-40b-0723 –	55	55	55	56	54	54	57	54	56	99	90	100	92	100	100	97	100	90	76
llama-2-70b-chat –	82	89	90	90	91	87	82	88	89	96	96	96	96	96	96	96	96	96	92
mean –		82	83	83	82	80	80	81	81	97	96	97	96	97	97	97	97	96	


Results: Cross-Model Detection Results - Influence of Quantization



93

Results: Cross-Model Detection Results - Influence of watermarking


Results: Model Attribution - Source Model Identification

True label

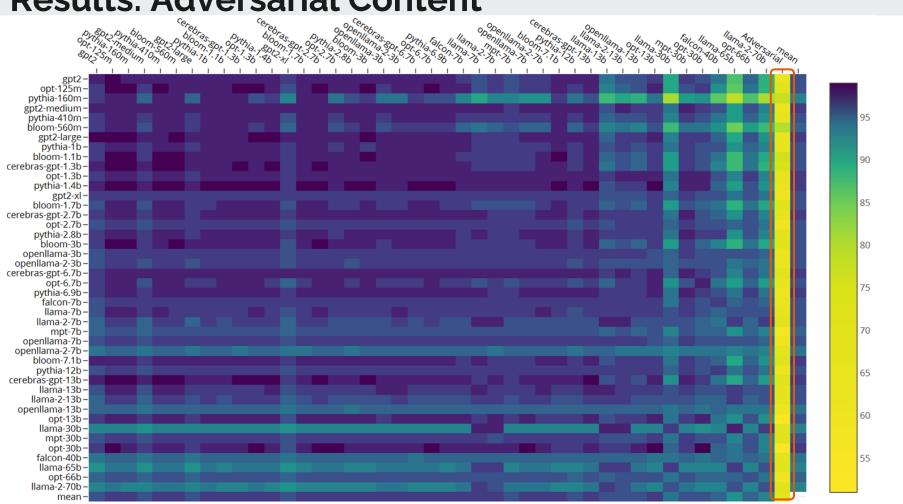
10

Results: Model Attribution - Model Family Classification

True label

Results: Model Attribution - Model Size Classification

Predicted label


		<1B	1-5B	5-10B	10-20B	20-50B	>50B		
True label	<1B	19	10	15	45	8	0		60
	1-5B	9	25	15	42	7	0		
	5-10B	3	8	13	49	23	1		40
	10-20B	2	5	9	50	31	1		20
	20-50B	0	0	1	24	55	17		20
	>50B	0	0	0	3	35	60		0

Results: Model Attribution Quantization and Watermarking Detection

- Quantization Detection:
 - Classifier accuracy: 54.5% (2 labels)
 - GPTQ method shows effectiveness without leaving discernible traces.

- Watermark Detection:
 - Classifier accuracy: 82.3%
 - Implication: Watermark signatures identifiable and disclosed through encoder classifier, without access to source model's log probabilities.

Results: Adversarial Content

Conclusion & Limitations

- Key Takeaways:
 - Conducted study in controlled environment to isolate variable influences.
 - Performance demonstrated not indicative of real-world expectations.
 - Envision detectability score as proxy for model quality evaluation.
 - Results highlight complex interplay of model size, family, and training data in LLM detection and attribution.
 - We provide all experiment results in interactive online repository: <u>https://huggingface.co/spaces/wissamantoun/LLM_Detection_Attribution</u>
- Limitations:
 - Did not explore impact of various sampling strategies or parameters like temperature.
 - Study focused only on openly available models, excluding black box models accessible only through APIs.
 - Classification technique constrained to fine-tuning a single model, potentially overlooking alternative approaches.

Thank you