

Reimagining Intent Prediction: Insights from Graph-Based Dialogue Modeling and Sentence Encoders

By: Ledneva Daria, ledneva.dr@mipt.ru Denis Kuznetsov, kuznetsov.den.p@phystech.edu

Graph Models: The Future of Dialogue Systems

Revealing the Power of Graph-Based Models in Dialogue Systems

Within our study:

- → Dive into the future of Conversational AI with our groundbreaking research
- → Explore scenario dialogue graphs: the solution for context comprehension
- → Unlock the secrets behind accurate intent prediction in closed-domain dialogue systems
- → Elevate your dialogue systems to new heights with insights from our study! ...

Dialogue Data Characteristics

Understanding the Dynamics of Dialogue Data

→ Features of dialogues:

- Dialogues have a regular structure
- Participants play different roles
- Contextual dependencies
- → Intention (dialogue state) the goal/purpose of a dialogue participant in a dialogue utterance
- → Intent prediction in a dialogue system is the determination of the intention of the next utterance in a dialogue based on the context

Multipartite Scenario Dialogue Graph

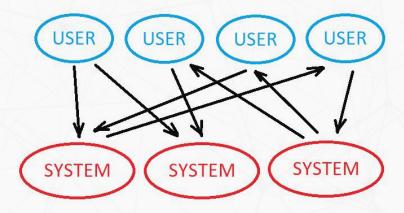
Visualizing Dialogue Systems: Understanding Multipartite Scenario Dialogue Graphs

- → Two types of dialogue systems:
 - With an **open** domain
 - With a closed domain
- → Dialogues in the dialogue systems with a **closed** domain:
 - Restricted to a narrow subject area
 - Can be modeled as a chain of intents with transitions between them
- → A multipartite graph an interpretable representation of a dialogue system
- → Each **partite** of the graph represents one of the **roles** of the dialogue participants
- → The **role** defines the function or position of each participant in the dialogue

Multipartite Scenario Dialogue Graph

Visualizing Dialogue Systems: Understanding Multipartite Scenario Dialogue Graphs

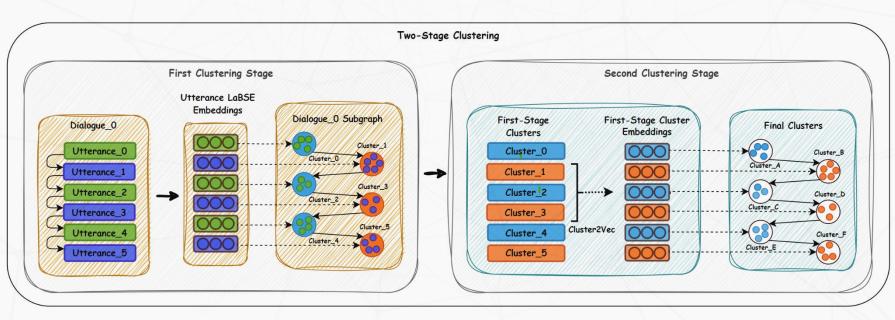
- → Each **node** of the graph defines a unique **intention** in the dialogue
- → The edges in the graph are transitions between states of the dialogue
- → Closed domain datasets: 2 roles (user, system) and a bipartite graph
- → Open domain datasets: 1 role (dialogue participant) and a unipartite graph



Two-stage Clustering Algorithm

Clustering Algorithm: Two-Stage Approach for Constructing Nodes in a Dialogue Graph

- → The first stage: the semantics of utterances
- → The second stage: contextual dependencies
- → Cluster2Vec: the clusters play the role of "words"



Examples of Dialogue Graph Nodes

Dialogue Graph Nodes: Utterances with Similar Semantic and Contextual Occurrence

Samples from the graph nodes, two-stage clustering method								
User cluster #1	User cluster #2	Dialogue system cluster #1	Dialogue system cluster #2					
Can I please have the phone number and ad- dress for that place?	Yes, please book a table for 4 people at 12:15 on Tuesday.	Thank you for contacting us and have a nice day.	I'm sorry. There is still no avail- ability. Would you like to try a different hotel then?					
Could you tell me the price, address and phone number?	Book it for the same num- ber of people at 14:30 on the same day.	Thank you for using Cambridge Town Info centre, have a great day!	I'm sorry, there were no rooms available. Perhaps you'd like to find another hotel?					
How about Jesus Green Outdoor pool. Could I have their address and phone number?	I don't have a preference for food type. I do need reservations for 8 at 12:00 on Thursday.	You're very welcome, enjoy your time in Cambridge!	I'm sorry, there are no rooms available for that length of stay Could you shorten your stay or book a different day possibly?					
Yes, please. Can I get the address and phone number for the one you recommend?	Can you see if there's any- thing at 20:00?	Great! I'm happy to help. Good- bye!	The booking for the Acorn Gues House was unsuccessful. Would you like me to look for anothe hotel for you?					
Do you have there phone number? La Mimosa sounds good. Can your reserve me a ta- ble for 1 on Saturday at 11:15?		I'm glad I was able to help. Please call back if you have any more questions!	I am sorry, but the Leverton House was not available for you party on Tuesday. Would you like me to look for another hotel?					

Table 5: Samples from the user and dialogue system MultiWOZ 2.2 graph nodes.

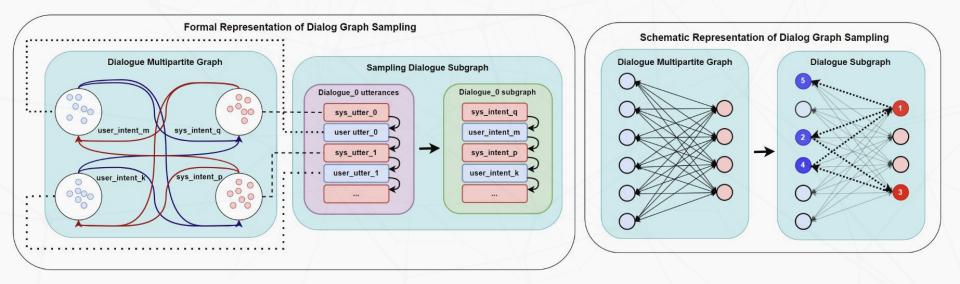
Dialogue Subgraph Sampling

Dialogue Subgraph Construction: Extracting Structure from Dialogues Using Dialogue Graphs

- → Dialogue -> Dialogue Subgraph **G = (V, E)**
- \rightarrow Vertex (v_i) contains the intention of the utterance (u_i)

 $V = unique(\{v_1, v_2, ..., v_t\})$

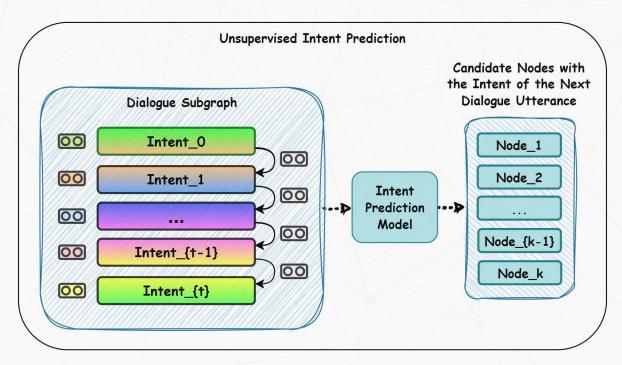
 $\mathsf{E} = \{(\mathsf{v}_1, \mathsf{v}_2), (\mathsf{v}_2, \mathsf{v}_3), ..., (\mathsf{v}_{t^{-1}}, \mathsf{v}_t)\}$



Next Intention Prediction

Visual Representation: Predicting Next Intentions with Dialogue Subgraphs

→ The task of predicting the next intention:



Baseline Approaches

Description of the Approaches Compared to the Graph Methodologies in the Study

→ Markov Chains

Based on probabilistic transitions in a multipartite dialogue graph

→ Encoder

 Obtaining vector representations for utterances, predicting next dialogue utterance and their intent based on these representations

→ ConveRT

- Dual encoder model
- Takes into account more than one dialogue history utterance

→ ConveRT-MAP

- ConveRT + Context-Response Feed-Forward Neural Network
- Contrastive loss based on cosine distance is used as a loss
- → Gradient Boosting (CatBoost)

Graph-Based Approaches

A Comprehensive Explanation of Methodologies Utilizing Graphs

DeepPavlov.ai

→ Homogeneous configuration (Message Passing):

- One type of the edges and vertices in the graph
- Graph Attention Networks (GATs)^{III} was used alongside other Message Passing Neural Networks
- GATs characterized by its attention mechanism on the graph
- → Heterogeneous configuration (FastGTN^[2]):
 - Various types of the edges and vertices in the graph
 - A separate weight matrix for each vertex type
 - Complex structural dependencies are taken into account in addition to neighbouring vertex representations

Datasets

An Overview of Open and Closed Domain Data Employed for Evaluation

→ Open Domain Datasets:

- PersonaChat: 160,000+ conversational exchanges on diverse topics
- DailyDialog: 13,000+ dialogues spanning life events and interests

→ Closed Domain Datasets:

- MultiWOZ 2.2: 10,000+ dialogues across 7 domains like hotels and restaurants
- FoCus: 14,000+ dialogues centered on geographical landmarks
- Taskmaster: 13,000+ dialogues across 6 domains, including written and spoken interactions

Experiment Setup

Details of Experiment Design and Metric Descriptions

- → Metrics (the accuracy of predicting the intention of the next utterance):
 - Recall@k: k ∈ {1, 3, 5, 10}
 - MAR (Mean Average Recall):
 - The average value of Recall@k for $k \in \{1, 3, 5, 10\}$
 - Separate metrics for different dialogue roles
- → To ensure result stability, each approach was trained on three different sets of clusters, and the metrics were then averaged
- → Each approach was run on **three** configurations of cluster numbers:
 - [200, 30], [400, 60], [800, 120]
- → The choice of the number of clusters depends on the unique characteristics of each dataset and the specific requirements of the task

One-Stage vs Two-Stage Clustering

Comparing Approaches for Constructing Dialogue Graph Nodes

→ Employing a two-stage clustering approach outperforms single-stage clustering for next-intention prediction tasks

Models	MPNet	MPNet-one-stage 109M				
# of Parameters	109M					
	Encoder					
Recall@1	$\textbf{23.63} \pm \textbf{0.531}$	19.18 ± 0.421				
Recall@3	$\textbf{47.87} \pm \textbf{0.469}$	41.31 ± 0.435				
Recall@5	$\textbf{58.92} \pm \textbf{0.738}$	53.99 ± 0.157				
Recall@10	$\textbf{74.19} \pm \textbf{1.109}$	$\textbf{72.21} \pm \textbf{0.023}$				
N SANK	Message Passing					
Recall@1	$\textbf{46.94} \pm \textbf{1.135}$	$\textbf{37.79} \pm \textbf{0.818}$				
Recall@3	$\textbf{74.40} \pm \textbf{0.277}$	$\textbf{67.12} \pm \textbf{0.386}$				
Recall@5	$\textbf{83.45} \pm \textbf{0.136}$	80.46 ± 0.470				
Recall@10	$\textbf{92.74} \pm \textbf{0.352}$	92.61 ± 0.703				
	Markov Chain					
Recall@1	$\textbf{37.62} \pm \textbf{0.503}$	$\textbf{27.56} \pm \textbf{1.007}$				
Recall@3	$\textbf{63.86} \pm \textbf{0.282}$	55.20 ± 0.993				
Recall@5	$\textbf{75.19} \pm \textbf{0.474}$	70.81 ± 1.164				
Recall@10	$\textbf{88.56} \pm \textbf{0.728}$	88.23 ± 0.483				

Metrics: Sentence Encoder Selection

Comparison of Different Sentence Encoders for Dialogue Graph Node Construction

Models	MPNet	MPNet-one-stage	DistilRoBERTa	S-BERT	MiniLM	GloVe	GPT	T5
# of Parameters	109M	109M 109M		22M	33M	120M	125M	335M
				Encod	er			
Recall@1	$\textbf{23.63} \pm \textbf{0.531}$	19.18 ± 0.421	$\textbf{23.92} \pm \textbf{0.806}$	$\textbf{21.22} \pm \textbf{1.417}$	$\textbf{23.15} \pm \textbf{1.489}$	13.35 ± 0.341	$\textbf{21.01} \pm \textbf{1.233}$	$\textbf{23.08} \pm \textbf{0.884}$
Recall@3	$\textbf{47.87} \pm \textbf{0.469}$	41.31 ± 0.435	$\textbf{47.57} \pm \textbf{0.219}$	$\textbf{43.55} \pm \textbf{1.086}$	$\textbf{47.13} \pm \textbf{1.508}$	$\textbf{32.51} \pm \textbf{0.890}$	$\textbf{44.36} \pm \textbf{1.241}$	$\textbf{48.95} \pm \textbf{0.719}$
Recall@5	$\textbf{58.92} \pm \textbf{0.738}$	53.99 ± 0.157	$\textbf{58.81} \pm \textbf{0.405}$	$\textbf{53.67} \pm \textbf{1.012}$	$\textbf{59.50} \pm \textbf{0.419}$	$\textbf{44.07} \pm \textbf{0.840}$	$\textbf{54.90} \pm \textbf{1.223}$	$\textbf{60.01} \pm \textbf{0.343}$
Recall@10	$\textbf{74.19} \pm \textbf{1.109}$	$\textbf{72.21} \pm \textbf{0.023}$	$\textbf{73.75} \pm \textbf{1.164}$	$\textbf{68.28} \pm \textbf{0.914}$	$\textbf{74.35} \pm \textbf{0.372}$	$\textbf{61.97} \pm \textbf{1.046}$	71.72 ± 1.541	$\textbf{73.70} \pm \textbf{0.271}$
	\sim		MAX M-	Message Pa	assing			
Recall@1	$\textbf{46.94} \pm \textbf{1.135}$	$\textbf{37.79} \pm \textbf{0.818}$	$\textbf{46.55} \pm \textbf{1.288}$	45.82 ± 1.263	$\textbf{46.33} \pm \textbf{0.766}$	$\textbf{38.77} \pm \textbf{1.726}$	44.78 ± 0.633	$\textbf{48.23} \pm \textbf{0.614}$
Recall@3	$\textbf{74.40} \pm \textbf{0.277}$	67.12 ± 0.386	$\textbf{74.36} \pm \textbf{0.533}$	$\textbf{71.80} \pm \textbf{0.804}$	$\textbf{72.82} \pm \textbf{1.033}$	$\textbf{64.07} \pm \textbf{0.797}$	71.07 ± 0.212	$\textbf{74.29} \pm \textbf{0.687}$
Recall@5	$\textbf{83.45} \pm \textbf{0.136}$	80.46 ± 0.470	$\textbf{83.63} \pm \textbf{0.558}$	81.62 ± 0.756	82.15 ± 0.670	$\textbf{76.47} \pm \textbf{0.336}$	81.50 ± 0.211	$\textbf{83.90} \pm \textbf{0.532}$
Recall@10	$\textbf{92.74} \pm \textbf{0.352}$	92.61 ± 0.703	$\textbf{93.17} \pm \textbf{0.758}$	92.27 ± 0.541	$\textbf{92.35} \pm \textbf{0.486}$	89.99 ± 0.534	92.37 ± 0.345	$\textbf{93.31} \pm \textbf{0.752}$
				Markov C	hain			
Recall@1	$\textbf{37.62} \pm \textbf{0.503}$	27.56 ± 1.007	$\textbf{37.99} \pm \textbf{0.599}$	$\textbf{36.66} \pm \textbf{1.207}$	$\textbf{37.47} \pm \textbf{0.648}$	$\textbf{28.66} \pm \textbf{1.735}$	$\textbf{36.98} \pm \textbf{1.105}$	$\textbf{36.81} \pm \textbf{0.735}$
Recall@3	63.86 ± 0.282	55.20 ± 0.993	$\textbf{65.52} \pm \textbf{0.469}$	63.43 ± 0.965	$\textbf{64.65} \pm \textbf{0.513}$	52.76 ± 1.503	61.29 ± 0.940	$\textbf{65.28} \pm \textbf{0.588}$
Recall@5	$\textbf{75.19} \pm \textbf{0.474}$	70.81 ± 1.164	$\textbf{76.96} \pm \textbf{0.269}$	74.45 ± 0.977	$\textbf{76.20} \pm \textbf{0.322}$	64.97 ± 1.106	$\textbf{72.83} \pm \textbf{0.452}$	$\textbf{76.38} \pm \textbf{0.638}$
Recall@10	$\textbf{88.56} \pm \textbf{0.728}$	88.23 ± 0.483	89.62 ± 0.564	87.78 ± 0.730	$\textbf{88.48} \pm \textbf{0.223}$	82.92 ± 0.151	86.71 ± 0.294	89.37 ± 0.727

Table 1: Evaluation of text encoders in generating vector representations for dialogue utterances in the MultiWOZ dataset and their impact on the three primary approaches: Message Passing, Encoder, and Markov Chain.

Metrics: Closed Domain Datasets

DeepPavlov.ai

Results of Evaluation of Approaches on Closed Domain Datasets

Approach # Trai	Relative	Da	taset		MultiWOZ			FoCus			Taskmaster						
	Training	# CI	usters	User	Dialog	All	User	Dialog	All	User	Dialog	All					
	rarameters	Time	First	Second		System			System			System	7.0.				
			Stage	Stage													
Markov		1/	200	30	59.47 ± 0.77	75.57 ± 0.59	67.52 ± 0.48	52.55 ± 1.30	52.15 ± 2.06	52.35 ± 0.98	57.79 ± 0.45	59.63 ± 0.67	58.77 ± 0.51				
Chain	10K	0.13	400	60	47.05 ± 1.88	$\textbf{66.19} \pm \textbf{1.50}$	56.61 ± 1.60	46.67 ± 0.70	44.46 ± 0.71	45.57 ± 0.56	49.84 ± 0.86	49.06 ± 0.29	49.52 ± 0.52				
Chain			800	120	30.90 ± 1.26	48.33 ± 1.47	39.62 ± 0.43	39.67 ± 1.91	39.86 ± 0.76	39.77 ± 0.81	42.60 ± 0.44	43.57 ± 0.24	$\textbf{43.14} \pm \textbf{0.18}$				
Magazza			200	30	$\textbf{65.24} \pm \textbf{1.09}$	$\textbf{83.62} \pm \textbf{0.64}$	$\textbf{74.43} \pm \textbf{0.78}$	$\textbf{66.34} \pm \textbf{2.31}$	$\textbf{68.80} \pm \textbf{0.70}$	$\textbf{67.57} \pm \textbf{1.46}$	$\textbf{72.04} \pm \textbf{0.70}$	$\textbf{78.69} \pm \textbf{0.60}$	$\textbf{75.41} \pm \textbf{0.45}$				
Message	82M + 3.7M	0.47	400	60	52.66 ± 0.44	$\textbf{75.88} \pm \textbf{0.78}$	$\textbf{64.27} \pm \textbf{0.33}$	$\textbf{59.56} \pm \textbf{1.67}$	$\textbf{63.36} \pm \textbf{0.72}$	$\textbf{61.46} \pm \textbf{0.71}$	64.73 ± 0.53	$\textbf{69.98} \pm \textbf{0.47}$	$\textbf{67.40} \pm \textbf{0.33}$				
Passing			800	120	$\textbf{35.93} \pm \textbf{0.72}$	$\textbf{58.35} \pm \textbf{0.92}$	$\textbf{47.14} \pm \textbf{0.67}$	$\textbf{54.64} \pm \textbf{1.05}$	$\textbf{56.07} \pm \textbf{0.90}$	$\textbf{55.35} \pm \textbf{0.61}$	$\textbf{57.56} \pm \textbf{0.41}$	$\textbf{64.00} \pm \textbf{0.37}$	$\textbf{60.83} \pm \textbf{0.32}$				
			200	30	$\textbf{65.88} \pm \textbf{0.54}$	83.09 ± 0.56	$\textbf{74.48} \pm \textbf{0.45}$	$\textbf{65.71} \pm \textbf{0.37}$	$\textbf{69.09} \pm \textbf{0.31}$	67.41 ± 0.20	71.57 ± 0.30	$\textbf{78.23} \pm \textbf{0.52}$	$\textbf{74.94} \pm \textbf{0.24}$				
CatBoost	CatBoost 82M + 2.2M	1.00	400	60	51.07 ± 1.07	$\textbf{73.09} \pm \textbf{0.81}$	$\textbf{62.08} \pm \textbf{0.83}$	$\textbf{59.61} \pm \textbf{1.47}$	60.91 ± 0.46	$\textbf{60.26} \pm \textbf{0.77}$	$\textbf{65.03} \pm \textbf{0.34}$	68.93 ± 0.33	67.01 ± 0.24				
			800	120	37.16 ± 0.58	55.45 ± 0.74	46.30 ± 0.59	54.55 ± 0.35	53.94 ± 0.74	54.25 ± 0.49	56.53 ± 0.35	62.60 ± 0.29	59.61 ± 0.30				
	<<		200	30	65.55 ± 0.64	$\textbf{83.04} \pm \textbf{0.48}$	$\textbf{74.30} \pm \textbf{0.26}$	$\textbf{65.12} \pm \textbf{2.73}$	$\textbf{68.98} \pm \textbf{1.16}$	$\textbf{67.05} \pm \textbf{1.38}$	$\textbf{72.53} \pm \textbf{0.41}$	$\textbf{78.30} \pm \textbf{0.51}$	$\textbf{75.46} \pm \textbf{0.36}$				
FastGTN	82M + 1.9M	0.49	400	60	51.84 ± 0.66	$\textbf{75.94} \pm \textbf{0.95}$	$\textbf{63.89} \pm \textbf{0.55}$	55.89 ± 1.93	61.76 ± 0.58	58.82 ± 1.04	$\textbf{65.84} \pm \textbf{0.50}$	$\textbf{70.11} \pm \textbf{0.36}$	68.01 ± 0.29				
		1	800	120	36.40 ± 0.90	58.38 ± 1.29	$\textbf{47.39} \pm \textbf{0.41}$	$\textbf{54.19} \pm \textbf{1.50}$	$\textbf{55.91} \pm \textbf{0.28}$	$\textbf{55.05} \pm \textbf{0.77}$	$\textbf{57.52} \pm \textbf{0.51}$	64.27 ± 0.47	$\textbf{60.93} \pm \textbf{0.43}$				
		/	200	30	34.69 ± 1.20	67.33 ± 0.90	51.01 ± 0.65	39.01 ± 1.63	59.11 ± 0.80	49.06 ± 0.77	46.08 ± 0.72	49.05 ± 0.42	47.56 ± 0.19				
Encoder	82M	82M	82M	82M	82M	0.50	400	60	24.67 ± 0.44	53.40 ± 2.03	39.04 ± 0.90	32.50 ± 0.87	50.39 ± 0.73	41.45 ± 0.56	36.35 ± 0.24	40.88 ± 0.20	38.61 ± 0.19
						800	120	15.31 ± 0.33	36.35 ± 0.74	25.83 ± 0.41	28.55 ± 0.41	43.16 ± 0.43	35.86 ± 0.26	27.82 ± 0.14	31.21 ± 0.14	29.52 ± 0.11	
			200	30	32.81 ± 0.78	57.94 ± 0.94	45.38 ± 0.81	38.13 ± 0.85	60.62 ± 0.32	49.38 ± 0.50	47.52 ± 0.36	59.80 ± 0.78	53.66 ± 0.34				
ConveRT	46M	0.36	400	60	21.10 ± 0.23	46.25 ± 1.00	33.67 ± 0.53	33.19 ± 0.63	52.53 ± 0.87	42.86 ± 0.45	37.87 ± 0.57	45.92 ± 0.64	41.90 ± 0.44				
		800	120	12.71 ± 0.56	29.38 ± 0.69	21.04 ± 0.27	28.59 ± 0.23	45.80 ± 0.85	37.20 ± 0.47	29.54 ± 0.31	38.52 ± 0.18	34.03 ± 0.23					
0		1	200	30	51.75 ± 1.87	75.97 ± 1.08	63.86 ± 1.38	55.74 ± 1.33	60.11 ± 1.49	57.92 ± 0.86	63.18 ± 0.68	70.82 ± 0.90	67.00 ± 0.68				
ConveRT	46M + 2M	0.78	400	60	39.39 ± 1.33	61.44 ± 1.31	50.41 ± 1.32	44.31 ± 1.38	47.52 ± 1.40	45.92 ± 1.25	54.54 ± 0.61	58.59 ± 0.88	56.56 ± 0.53				
MAP			800	120	22.20 ± 1.21	39.75 ± 0.36	31.35 ± 0.58	37.62 ± 0.42	36.99 ± 1.43	37.29 ± 0.61	43.61 ± 1.09	49.61 ± 0.90	46.61 ± 0.99				

Table 3: Experimental results for Mean Average Recall metric: various intent prediction approaches on the closed domain datasets. The training time of the models was counted from the start of training until the Early Stopping. The all metric is the average of the user metric and the dialogue system metric. To ensure stability of results, all approaches were trained on 3 different sets of clusters and the resulting metrics were averaged.

Metrics: Open Domain Datasets

Results of Evaluation of Approaches on Open Domain Datasets

Approach	#	Relative	# CI	usters	PersonaChat	DelluDislas	
	Parameters	Training Time	First Second Stage Stage		Personachat	DailyDialog	
Markov	11 - 12	0.13	200	30	52.50 ± 2.27	49.91 ± 0.85	
Chain	10K		400	60	41.67 ± 2.28	40.53 ± 2.6	
Chain	s. 177		800	120	32.72 ± 1.03	31.48 ± 0.9	
Massage	N X N		200	30	$\textbf{58.86} \pm \textbf{1.06}$	$\textbf{57.13} \pm \textbf{2.2}$	
Message	82M + 3.7M	0.47	400	60	$\textbf{48.79} \pm \textbf{0.68}$	$\textbf{47.15} \pm \textbf{0.7}$	
Passing			800	120	$\textbf{42.96} \pm \textbf{0.68}$	$\textbf{38.52} \pm \textbf{0.4}$	
54.0	82M + 2.2M	1100	200	30	$\textbf{59.31} \pm \textbf{1.24}$	$\textbf{58.67} \pm \textbf{0.9}$	
CatBoost		1.00	400	60	$\textbf{50.12} \pm \textbf{0.78}$	$\textbf{47.55} \pm \textbf{1.2}$	
			800	120	$\textbf{42.56} \pm \textbf{0.63}$	$\textbf{39.50} \pm \textbf{0.6}$	
VAN	82M + 1.9M	0.49	200	30	$\textbf{60.21} \pm \textbf{2.29}$	55.88 ± 0.5	
FastGTN			400	60	$\textbf{49.11} \pm \textbf{0.45}$	$\textbf{46.35} \pm \textbf{0.7}$	
			800	120	$\textbf{41.68} \pm \textbf{1.35}$	$\textbf{38.92} \pm \textbf{0.9}$	
AN.	82M	0.50	200	30	43.45 ± 2.20	48.92 ± 0.5	
Encoder			400	60	30.95 ± 2.02	39.95 ± 1.6	
			800	120	24.10 ± 4.06	31.16 ± 0.6	
			200	30	45.39 ± 1.46	50.24 ± 2.3	
ConveRT	46M	0.36	400	60	35.01 ± 2.96	40.65 ± 0.9	
			800	120	27.32 ± 2.33	32.27 ± 0.5	
ConveRT	0/ 1/ 3	0.78	200	30	47.08 ± 2.01	50.51 ± 2.0	
MAP	46M + 2M		400	60	39.97 ± 1.69	38.41 ± 2.1	
WAP			800	120	20.78 ± 2.01	29.66 ± 1.8	

Table 2: Experimental results for Mean Average Recall metric: various intent prediction approaches on the open domain datasets. The training time of the models was counted from the start of training until the Early Stopping. The all metric is the average of the user metric and the dialogue system metric. To ensure stability of results, all approaches were trained on 3 different sets of clusters and the resulting metrics were averaged.

Metrics: Comparative Table

Assessing Proposed Approaches: Comparative Evaluation Across Diverse Metrics and Datasets

→ If an approach performed best within the confidence interval within a specific configuration and dataset, it was assigned a score of 1

Dataset	Markov Chain	Message Passing	CatBoost	FastGTN	Encoder	ConveRT	ConveRT-MAP	Max Score
MultiWOZ	0	9	4	9	0	0	0	9
FoCus	0	9	6	6	0	0	0	9
Taskmaster	0	8	3	9	0	0	0	9
DailyDialog	0	3	3	2	0	0	0	3
PersonaChat	0	3	3	3	0	0	0	3
Closed Domain Summary	0	26	13	24	0	0	0	27
Open Domain Summary	0	6	6	5	0	0	0	6

Table 4: The table shows how different intent prediction methods performed in research. Each method gets a score of 1 if it does better than others on a specific metric; otherwise, it gets a score of 0. The table summarizes all the scores for each method and dataset.

Results and Discussion

Interpreting Findings: Insights and Analysis

The following results were obtained on the proposed methods and datasets:

→ Closed Domain Datasets

• Graph-based approaches showed superior performance

→ Open Domain Datasets

- Graph-based approaches were not outperforming gradient boosting techniques
- Open-domain datasets have a weakly regular structure

→ Asymmetry in Dialogue Roles

 A significant distinction between user and dialog system metrics was observed

Limitations

Study Limitations: Exploring Boundaries and Methodological Constraints

→ Language Focus

• Experiments primarily centered on English dialogue datasets

→ Participant Pool Size

• The datasets involved a relatively small number of participants

→ Traditional Dialogue Emphasis

- The study was focused on conventional dialogues, excluding non-standard formats like social media conversations
- → Clustering Impact
 - The study was conducted on fixed numbers of clusters

→ Sentence Encoder Selection

• Dialogue encoders like DSE were not considered

Thank you for your attention!