

AT THE CROSSROAD OF CUNEIFORM & NLP

Challenges for Fine-grained Part-of-Speech Tagging – Gustav Ryberg Smidt, Katrien de Graef and Els Lefever

<u>OUTLINE</u>

- Introduction and questions
- What is Cuneiform and Akkadian?
- Cuneiform NLP
 - Input data and goals
 - Hurdles
 - Experiments
 - Results
- Perspectives

INTRODUCTION

CUNE-IIIF-ORM & NLP

- Assyriologists and computational linguists
- Old Babylonian Akkadian letters
 - Narrow but "big-ish" corpus
 - Close to everyday language
 - Varied content
 - Many layers of society represented Sociolects?
 - Mainly Akkadian with occasional Sumerian
- Questions
 - What is the reality of language vs prescriptive grammars?
 - How do we best provide data for the research community?

WHAT IS CUNEIFORM?

CUNEIFORM

- Sumerian pictographic script from modern day Iraq
- Wedges pressed in clay combined into signs
- Logo-syllabic script with homophony, polyphony and classifiers
- No punctuation
- Used for many languages

Homophony	Polyphony	
∢ = u ₁	亲 = il ₃	
# # = u ₂	米 = an	
√ -⊞ = u ₃	米 = sa ₈	

Image of the Middle East from Google Earth, highlighting southern Iraq from where Cuneiform originated.

~100 C.E.

<u>AKKADIAN</u>

GHENT

UNIVERSITY

- Semitic language
- Greatly influenced by Sumerian (linguistic isolate)
- Subject Object Verb
- Two main dialects Babylonian (South) & Assyrian (North)
- Old Babylonian Akkadian 2000 to 1600 B.C.E.

~2500 B.C.E.

~100 C.E.

CUNEIFORM NLP

INPUT DATA & GOALS

- Input data
 - 121 letters / ~10.000 words
 - Lemmatized in Open Richly Annotated Cuneiform Corpus
 - Morphological annotations with regular expressions and manual corrections
- Goals
 - Semi-automatic morphological tagger
 - Corpus to contain all Old Babylonian Akkadian letters
 - Computational analyses of the corpus

INPUT DATA & GOALS

- Data format
 - Written form in transliteration
 - Preserves spelling variation
 - Morphological analyses with all features
 - Make definitions and labels more explicit
 - No syntactical information

1. Small datasets

[6]: c. 10.000.000 Akkadian words

- 2. Imperfect understanding of Akkadian syntax
- 3. How do we present an accurate picture of Akkadian, with Unicode cuneiform? [8]

EXPERIMENTS

- 1. Pre-trained models to predict labels
 - Predict effective PoS and simple grammatical features
 - Training data: transliterated text, verbs define sentence splits
- 2. Sentence segmentation
 - Predict effective PoS
 - Training data: transliterated text, various sentence splits
- 3. Unicode cuneiform
 - Predict effective PoS
 - Training data: transliterated or Unicode cuneiform text, verbs define sentence splits

EXPERIMENTS

- 80/20 training/test split
- 5 folds
- Each sentence randomly distributed between folds
- Flair contextual string embeddings [9]
 - Multilingual [10]
 - Arabic [11]
 - Japanese [12]
 - Spanish [13]
- Data and scripts available on Github: https://github.com/assyrugent/LREC-Coling2024 [14]

<u>RESULTS – 1. PRE-TRAINED MODELS</u>

- Data input
 - u₂-na-ah-hi-id-ma<tab_sep>V_D_preterite_1st_communalis_singular
- No big difference between results
- Arabic (Semitic) performed best
- Multilingual contains many different language families

Embeddings	Average accuracy
Multilingual	71,0 %
Arabic	76,2 %
Spanish	74,1 %
Japanese	72,6 %

RESULTS – 2. SENTENCE SEGMENTATION

- Data input
 - Automatic insertion of newline when reached a condition, e.g. PoS = Verb or word index + 1 is a new text
- Formatting our data works
- No clear winner out of the four verb- Ver formatted sentences
- Syntatic information can help, but it's time consuming

Seperation type	Average Accuracy
Text	88,2 %
Line	92,5 %
Verb	94,8 %
Verb – u	93,9 %
Verb – u & ma	94,1 %
Verb – u. ma & conjunction	93.5 %

<u>RESULTS – 3. UNICODE CUNEIFORM</u>

- Data input
 - wa-aš-bu<tab_sep>Verb vs (* < tap_sep>Verb
 - $= pi | pe | wa | wi | we | wu | tal_2$
 - = aš | rum | dil | țil | dal₃ | ina
 - \Rightarrow = bu | pu | sir₂ | $\dot{s}ir_2$ | gid₂ | qid₂
- Japanese script is logo-syllabic like Cuneiform
- A mix of script and language familiy relevant data could be beneficial, e.g. Japanese and Arabic

Embeddings	Transliteration	Unicode	Loss
Multilingual	91,3 %	61,3 %	30 %pt.
Arabic	94,1 %	69,4 %	24,7 %pt.
Spanish	93,7 %	63,0 %	30,7 %pt.
Japanese	93,4 %	73,9 %	19,5 %pt.

PERSPECTIVES

PERSPECTIVES

- What data can we acquire and build on?
- Can we emulate syntactic relations with morphological data and are there differences between periods and genres?
- Can we get close to the "real" cuneiform Akkadian?

REFERENCES

[1] = Louvre. 2024. "Code de Hammurabi: -1792 / -1750 (1ère dynastie de Babylone : Hammurabi)," Louvre Collection, https://collections.louvre.fr/en/ark:/53355/cl010174436.

[2] = Louvre. 2024. "tablette: -1894 / -1595 (1ère dynastie de Babylone)," Louvre Collection, https://collections.louvre.fr/en/ark:/53355/cl010125719.

[3] = CDLI contributors. 2024. "Home," Cuneiform Digital Library Initiative, https://cdli.mpiwg-berlin.mpg.de/

[4] = E. Robson. 2019. "AKK: Oracc Linguistic Annotation for Akkadian," Oracc: The Open Richly Annotated Cuneiform Corpus, Oracc,

http://oracc.museum.upenn.edu/doc/help/languages/akkadian/.

[5] = A. Sahala and K. Lindén. 2023. "Babylemmatizer 2.0 – a neural pipeline for pos-tagging and lemmatizing cuneiform languages," In Proceedings of the Ancient Language Processing Workshop associated with RANLP-2023, pp. 203–212.

[6] = M.P. Streck. 2010. "Großes fach altorientalistik: Der umfang des keilschriftlichen textkorpus," Mitteilungen der Deutschen Orient-Gesellschaft zu Berlin, 142:35–58.

[7] = G.R. Smidt, C. Johansson, N. Melin-Kronsell, S. Nett and R. Rattenborg. 2023. "Cuneiform Inscriptions Geographical Site - Assemblage Estimates (CIGS-AE) (1.0)," Zenodo, https://doi.org/10.5281/zenodo.8379793.

[8] = G. Gutherz, S. Gordin, L. Sáenz, O. Levy, and J. Berant. 2023. "Translating akkadian to english with neural machine translation," PNAS Nexus, 2(5):1–10.

[9] = Anonymous. n.d. "Flair embeddings | flair," Flair, accessed on 28th of April 2024 at 15:50, https://flairnlp.github.io/docs/tutorial-embeddings/flair-embeddings.

[10] = Ž. Agić and I. Vulić. 2019. "JW300: A wide-coverage parallel corpus for low-resource languages," In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3204–3210, Florence, Italy. Association for Computational Linguistics.

[11] = by @stefan-it: https://github.com/flairNLP/flair/issues/614.

- [12] = by @iamyiwha: https://github.com/flairNLP/flair/issues/80.
- [13] = by @alanakbik: https://github.com/flairNLP/flair/issues/527.
- [14] = G.R. Smidt, K.D. Graef and E. Lefever. 2024. "assyrugent / LREC-Coling2024,"

https://github.com/assyrugent/LREC-Coling2024.

[15] = F. Thureau-Dangin. 1910. "Lettres et Contrats de l'époque de La Première Dynastie Babylonienne," Paris: Librairie Paul Geuthner.

GustavRyberg.Smidt@Ugent.be

@assyrugent & @gurysm

@assyr_u

Thanks to our research partners at The Royal Museums of Art and History in Brussels and KU Leuven.

Funded by Belspo (BR/212/P/CUNE-IIIF-ORM)

