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Background

A example from DailyDialog dataset
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Motivation

Emotion distributions in three benchmark datasets: MELD, DailyDialog and IEMOCAP
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Methodology: Overview 

The architecture of the Contrast-Enhanced Prompt-Tuning (CEPT) Framework
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Hey!

Hey! Oh, I was just about to leave. I-I-I-I 

didn’t think you were coming.

Oh, I wouldn’t miss this.

Well, I’m very glad you’re here.

Oh, you’re such a gentleman.  Come on! 

We’re going to my place!

Context window of the target utterance with 𝑃 = 2 and S = 2

A Given Conversation

Target utterance

𝐶𝑖 =

𝑠 𝑢𝑖 ⊕ ":" ⊕ 𝑢𝑖 = “David: Well, I’m very glad you’re here.”

“David: Hey! Oh, I was just about to leave. I-I-I-I didn‘t think you were coming. 

Phoebe: Oh, I wouldn’t miss this. David: Well, I’m very glad you’re here. 

Phoebe: Oh, you‘re such a gentleman. Come on! We’re going to my place!”

Contextual information

The context-aware prompt

𝐼𝑖 = "Context: "⊕Ci⊕"Target: "⊕ 𝑠 𝑢𝑖 ⊕ ": "⊕𝑢𝑖
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Methodology: Contributions

➢ Bridging the gap between Pre-trained Language Model's Masked Language

Modeling task and the Emotion Recognition in Conversation task via

prompt-tuning, mitigating the issue of insufficient information on minority

emotions;

➢ Mining more information from emotion labels via Supervised Contrastive

Learning, reducing biased predictions for the common emotions.
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Methodology: Prompt construction
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Hey! Oh, I was just about to leave. I-I-I-I 

didn’t think you were coming.

Oh, I wouldn’t miss this.

Well, I’m very glad you’re here.

Oh, you’re such a gentleman.  Come on! 

We’re going to my place!

Context window of the target utterance with 𝑃 = 2 and S = 2

A Given Conversation

Target utterance

𝐶𝑖 =

𝑠 𝑢𝑖 ⊕ ":" ⊕ 𝑢𝑖 = “David: Well, I’m very glad you’re here.”

“David: Hey! Oh, I was just about to leave. I-I-I-I didn‘t think you were coming. 

Phoebe: Oh, I wouldn’t miss this. David: Well, I’m very glad you’re here. 

Phoebe: Oh, you‘re such a gentleman. Come on! We’re going to my place!”

Contextual information

The context-aware prompt

𝐼𝑖 = "Context: "⊕Ci⊕"Target: "⊕ 𝑠 𝑢𝑖 ⊕ ": "⊕𝑢𝑖

⊕ {"soft": "The emotion is:"} ⊕ {"mask"}Hard words Hard words

Soft words ➢ Hard words ("Context: " and "Target: ") indicate the

boundaries of context and target utterance.

➢ Soft words ("The emotion is: ") guide the Pre-trained

Language Model to generate the emotion of the

target utterance.
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Methodology: Label mapping

Mapping between original emotion category and label words
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Methodology: Label mapping

The probability that the emotion category of utterance ui is 𝑒𝑗, is calculated based on all 𝑒𝑗’s 

label words EWj = {ew1, ew2, … , ewkj}:

For a batch with 𝐷 utterances, the loss of MLM generation is calculated using cross-entropy 

loss as follows:

𝑝 𝑒𝑗 𝑢𝑖 =
𝑒𝑤𝑗∈𝐸𝑊𝑗

𝑝 𝑀𝐴𝑆𝐾 = 𝑒𝑤𝑗 𝐼𝑖

𝐿𝐺𝑒𝑛 = −
1

𝐷


𝑖=1

𝐷

𝒚𝒊 𝑙𝑜𝑔 𝑷𝒊
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Methodology: Supervised contrastive learning

We stack the predicted emotion probability distribution vectors of all utterances within a batch 

as a matrix Hb and make a copy of it as Hb
′ , whose gradient is detached to ensure the parameter 

optimization is stable.

The vectors used for computing the Supervised Contrastive Learning loss are denoted as Hm =

Hb, Hb
′ = {h1

m, h2
m, … , hD

m, hD+1
m , … , h2D

m }
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Methodology: Supervised contrastive learning

The calculation formula for Supervised Contrastive Learning:

𝐿𝑆𝐶𝐿 =
𝑖=1

2𝐷 −1

𝑃 𝑖


𝑝∈𝑃 𝑖
𝑆𝐼𝑀 ℎ𝑖

𝑚, ℎ𝑝
𝑚

𝑆𝐼𝑀 ℎ𝑖
𝑚, ℎ𝑝

𝑚 = 𝑙𝑜𝑔
𝑒𝑥𝑝 ℎ𝑖

𝑚 ⋅ Τℎ𝑝
𝑚 𝜏

σ𝑎∈𝐴 𝑖 𝑒𝑥𝑝 ℎ𝑖
𝑚 ⋅ Τℎ𝑎

𝑚 𝜏
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Methodology: Training

The loss that guides the training process of CEPT :

L = 1 − α LGen + αLSCL
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Experiments: Dataset

The statistics of the datasets
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Experiments: Evaluation Metrics

➢ MELD : Weighted average F1 (Weighted-F1);

➢ DailyDialog: Micro average F1 (Micro-F1) and exclude the

"Neutral" labels;

➢ IEMOCAP: Weighted average F1 (Weighted-F1).
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Experiments: Overall performance

Performance Comparison with the baseline and state-of-the-art methods
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Experiments: Performance on each emotion category

Performance Comparison in each emotion category of different methods on MELD
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Experiments: Ablation study

The ablation results of CEPT on three datasets
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Experiments: Prompt analysis

The five prompt templates using five different strategies and the performance of CEPT with 

different prompt templates
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Experiments: Parameters analysis

The performance of CEPT with different context window sizes on MELD, DailyDialog and IEMOCAP 
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Experiments: Parameters analysis

The performance of CEPT with different Supervised Contrastive Learning loss weights 

on MELD, DailyDialog and IEMOCAP 
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Experiments: Case Study

Case 1 from MELD with the ground-truth emotion labels and the predicted labels from CEPT and CISPER.
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Experiments: Case Study

Case 2 from MELD with the ground-truth emotion labels and the predicted labels from CEPT and SPCL-CL-ERC.
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Conclusions

➢ A context-aware mixed prompt template and a label mapping strategy for

prompt-tuning of the Pre-trained Language Model;

➢ Supervised Contrastive Learning for extracting more information from

the labels;

➢ Excellent overall performance and outstanding performance in

recognizing both minority emotions and common emotions.
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