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Abstract

I Decoding from PLMs often encounters the ‘likelihood
trap’ [1, 2], with standard strategies like greedy decoding, beam
search, and truncated sampling facing inherent limitations.

I Overgenerating multiple responses exposes a broad diversity
in response quality.

I We propose a simple but effective reranking method to select
high-quality responses from initially overgenerated lists.

I Our method, validated on the MultiWOZ dataset, enhances a
top E2E ToD system by 2.0 BLEU, 1.6 ROUGE, and 1.3
METEOR, setting new peak results.



Motivation: An Oracle Experiment

I In this ‘oracle’ experiment, we assume the availability of the
ground truth response.

I We use the MinTL system [3] trained on the MultiWOZ 2.0
dataset [4].



Motivation: An Oracle Experiment

I We over-sampled 20 responses from this E2E ToD system with
the nucleus sampling method [5].

I We ranked oversampled responses by their sentence-level
BLEU similarity to the ground truth.
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Preliminaries: Response Reranking

I Response reranking is similar to response selection.
I Data: D(i) includes a dialogue context c(i) and its

corresponding response r (i). The variables c(i) and r(i)

represent their embeddings.
I Training: The goal is to develop a scoring function s(·, ·) that

assigns a matching score to each context-response pair.
I Inference: Given a candidate set of responses R, the reranker

evaluates each context-response pair using a scoring function
s(·, ·) and selects the optimal response with argmaxr2R s (c, r).

I Objective: Response reranking is tasked to improve the
evaluation score M(c, r).



Method in a Nutshell

I We train a generative E2E dialogue model PMLE(r | c).
I For each training example (c, r) in the training set, we sample a

set of responses R = {r1, r2 . . . rj} from PMLE(r | c), where j
denotes the number of over-generated responses.

I For each rk 2 R, we calculate its score based on a scoring
function sk = s(rk , r), where r is the representation of the
ground truth response.

I The default scoring function is defined as the cosine similarity
based on the all-mpnet-v2 [6] encoder.



Method in a Nutshell

I After sampling responses R, we categorise them into a
high-scoring set Rhigh and a low-scoring set Rlow based on
their evaluation scores.

U: Hi! I am looking for a nice restaurant.
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Method in a Nutshell

I The reranking model scores and ranks a candidate response rk
based on the probability that the generated response is drawn
from the high-scoring set, namely P(rk 2 Rhigh | c).

I Not require access to the ground truth during inference.



Method in a Nutshell

I We propose a two-stage fine-tuning procedure, with two types
of reranking models in the second stage: a classification-based
model and a similarity-based model.
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Stage 1: Response Selection

I We fine-tune PLMs on the response selection task.
I Data: For each dialogue pair (c(i), r (i)) in dataset D, we create

a positive example (c(i), r (i), 1) and N negative examples, e.g,
(c(i), r (j), 0).

I Model: We rely on a standard cross-encoder architecture.
Given a training example (c, r , l), the model is trained to predict
the correct label by encoding the concatenation of a context
response pair [c, r ].

I Binary classifier.



Stage 2: Response Reranking

I Similarly, response reranking is again a binary classification
task.

I Data: Each data entry is a tuple (c, r , l), where l 2 {0, 1}. For
each dialogue, we generate a set of responses
R = {r1, r2 . . . rj} and a greedy search response rsearch. The
score ssearch is used as a local threshold value that splits the
set of generated responses into positive (i.e., ‘high-quality’) and
negative (‘low-quality’).



Stage 2: Response Reranking

I Method: classification-based and similarity-based.

BERT

[CLS] U: Hi! I am looking for a nice restaurant.
S: What type of food would you prefer?
U: I do not have any preference.
S1: What price range do you prefer?

Softmax

!

BERT

U: Hi! I am looking for a nice restaurant.
S: What type of food would you prefer?
U: I do not have any preference.
S1: What price range do you prefer?

Pooling

!

>

(a)  Classification-based Reranking (b) Similarity-based Reranking



Experimental Setup: ToD System

I Dataset: MultiWOZ 2.0 [4].
I Baseline E2E System: MinTL [3].
I Decoding: Greedy search and nucleus sampling [5] from the

top-0.7 portion of the probability mass.
I Evaluation Metrics: Corpus BLEU [7], ROUGE-L [8], and

METEOR [9] computed with delexicalised utterances.



Experimental Setup: Reranking Models

I Input PLMs: Sveral popular PLMs: BERT [10], RoBERTa [11],
and their distilled versions [12]. Supervised sentence
encoders: SimCSE [13] and other popular encoders from the
sentence-transformers (i.e., SBERT) repository [6].

I Model Variants:

I PLM+S1+S2: Stage 1 can be based on either lexicalised
dialogues (S1:lex) or delexicalised (S1:delex) dialogues.

I PLM+S2

I PLM+S1

I PLM

I Greedy

I Sampling



Results: Main Results

Variant BLEU ROUGE METEOR

Baselines

Sampling 15.8 27.3 31.0
Greedy 18.0 31.2 35.6

BERT Classification-based

+S2 19.4 32.1 36.4
+S1:delex+S2 19.3 32.3 36.3
+S1:lex+S2 19.3 32.1 36.2

quora-distilroberta Classification-based

+S2 19.6 32.0 36.1
+S1:delex+S2 20.0 32.8 36.9

+S1:lex+S2 19.8 32.6 36.7

BERT Similarity-based

+S2 18.6 30.8 34.8
+S1:delex+S2 19.6 32.0 36.5

+S1:lex+S2 19.1 31.7 36.0



Results: Main Results

Selection Reranking

Variant R@1 BLEU ROUGE METEOR

Random Sampling 5.0 15.8 27.3 31.0
Greedy – 18.0 31.2 35.6
BERT – 17.0 29.4 33.6
SimCSE – 16.7 29.0 33.2
all-mpnet – 16.0 27.6 31.8
BERT+S1:delex 51.0 16.7 39.3 33.8
BERT+S1:lex 77.2 17.1 29.7 34.3
DRoB+S1:delex 48.0 16.6 29.0 33.4
DRoB+S1:lex 74.4 16.6 29.6 34.5



Results: Ablation Study

Variant BLEU

Classification-based

quora-distilroberta+S1:delex+S2 20.0
- self-generated positives 13.7 (#6.3)
- multiple positives 19.1 (#0.9)
- cross-encoders (+ bi-encoders) 15.4 (#4.6)

Similarity-based

BERT+S1:delex+S2 19.6
- self-generated positives 15.2 (#4.4)
- multiple positives 19.2 (#0.4)



Results: Impact of the Input Encoder
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Results: Evaluation Metrics as Scoring Functions

S2 Scoring# / Evaluation! BLEU ROUGE METEOR

Greedy 18.0 31.2 35.6
Similarity 19.3 32.3 36.3
BLEU 20.3 33.2 37.2
ROUGE 20.7 33.6 37.6
METEOR 18.2 33.4 40.0



Results: Impact of the Candidate Set Size
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Results: BiTOD

Variant BLEU ROUGE METEOR

Beam Search 45.8 45.5 50.7
Sampling 43.0 42.9 48.4

BERT+S1:delex+S2:class 46.3 45.9 51.4
BERT+S1:delex+S2:sim 45.9 45.4 51.3



Results: Human Evaluation

Example 1

History

......
S: i would recommend christ ’s college . it is free to visit .
U: could i have their postcode please ?
S: christ ’s college ’s post code is cb23bu
U: thank you , that is all the information i need

Ground Truth S: you are welcome , please contact us if we can help you with anything else .

Greedy S: the postcode is [value postcode] . is there anything else i can help you with ?

Classification-based S: you are welcome . have a great day!

Similarity-based S: ok, you are welcome . have a great day!

Example 2

History

U: i am planning a trip in cambridge
S: great ! is there a certain restaurant you are looking for ?
U: moderate price in the east . and i need the phone number , address , and food type
S: i have the curry prince which is indian food . would you like that 1 ?
U: yes . that would be fine . what is the address and phone number ?

Ground Truth S: the address is [value address] and the phone number is [value phone] . would you like me to make a reservation for you ?

Greedy S: [value name] is an [value food] restaurant in the [value area] . their address is [value address] . their phone number is [value phone] .

Classification-based S: the address is [value address] and the phone number is [value phone] .

Similarity-based S: the address is [value address], and the phone number is [value phone] .

Example 3

History

......
U: thank you . can you also book a taxi for me ?
S: sure , i need to know destination and where you need picked up . i also need the time and number of people .
U: i also need a taxi from the church so i can get to the restaurant on time .”

Ground Truth S: i will work on getting that booked for you .

Greedy S: i can help with that . where will you be departing from ?

Classification-based S: your taxi has been booked . it will be a [value car] and the contact number is [value phone] . is there anything else i can help you with ?

Similarity-based S: your taxi is booked . it will be a [value car] and the contact number is [value phone] .



Results: Human Evaluation

Method A vs Method B # of A # of B % of A % of B Total # Fleiss’ Kappa

Classification vs Greedy 297 303 49.5 50.5 600 0.28
Similarity vs Greedy 347 253 *57.8 *42.2 600 0.26
Similarity vs Classification 335 265 *55.8 *44.2 600 0.16



Thank you!

I We release the dataset and code at
https://github.com/cambridgeltl/response reranking.

I Any questions? Please email me: sh2091@cam.ac.uk.
I See you at LREC-Coling 2024!
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