Knowledge-augmented Graph Neural Networks with Concept-aware Attention for Adverse Drug Event Detection

Ya Gao*, Shaoxiong Ji*, Pekka Marttinen

Adverse Drug Events (ADEs)

ADE: An adverse reaction resulting from improper drug use

How to detect ADEs?

- A clinical trial
- From users' voluntary ADE reports
- Detect ADEs automatically using NLP techniques

ADEs detection

Drowsiness

UMLS CUI: C0013144

Blurred vision

UMLS CUI: C0344232

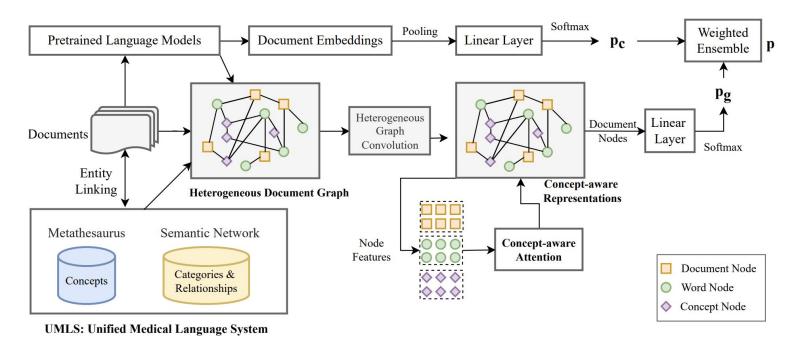
I feel a bit drowsy & have a little blurred vision, so far no gastric problems.

I've been on Arthrotec 50 for over 10 years on and off, only taking it with I needed it.

Arthrotec 50 UMLS CUI: C0731334 Medical Knowledge

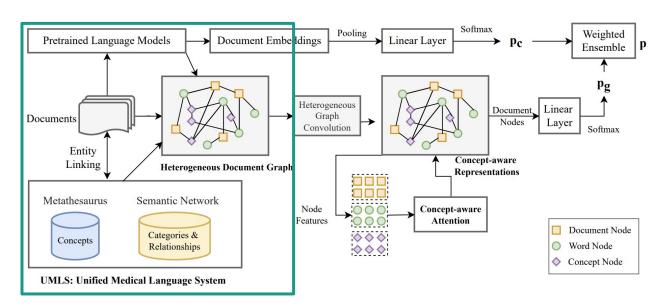
Text mentions of adverse drug events include a plethora of drug names and adverse reactions, which can be mapped to Unified Medical Language System (UMLS) concepts.

Knowledge-augmented Concept-Aware Graph Embeddings (KnowCAGE)



Word Nodes, Document Nodes and Concept Nodes:

- Map words or phrases in the document to Concept Unique Identifiers (CUIs);
- Use "preferred name", a short description or a synonym of this concept, to represent each CUI



Knowledge-augmented Graph Construction

Adjacent Matrix A

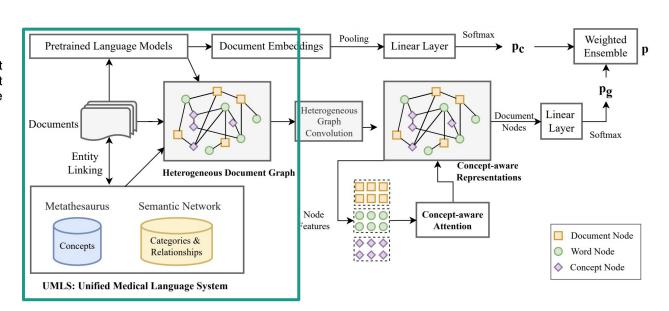
$$\mathbf{A}_{ij} = \left\{ \begin{array}{ll} \mathrm{SIM}(i,j), & \mathrm{SIM} > 0; \mathrm{i, j: word/concept} \\ \mathrm{TF\text{-}IDF_{ij}}, & \mathrm{i: document, j: word/concept} \\ 0, & \mathrm{otherwise} \end{array} \right.$$

We explore different measurement methods for

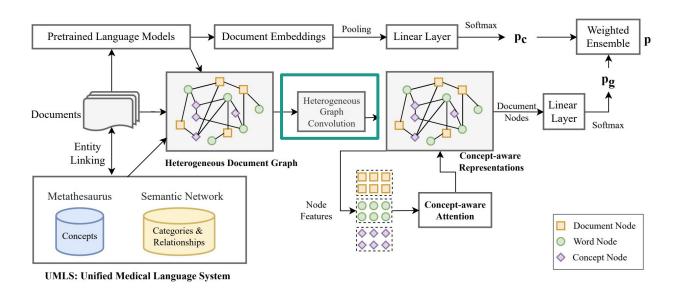
SIM(i,j): L1 distance, L2 distance, Cosine distance, and Pointwise Mutual Information.

Initial feature matrix H

$$\mathbf{H}^{[0]} = \left(egin{array}{c} \mathbf{H}_{doc} \ \mathbf{0} \end{array}
ight)$$



Knowledge-augmented Graph Construction



Heterogeneous Graph Convolution

Different choices: GCN, GAT, DGCNN

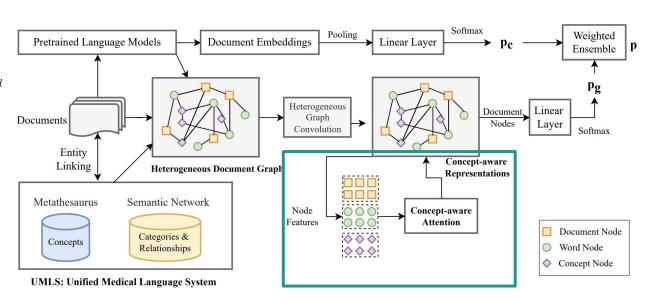
Different query matrices for different types of nodes accordingly:

$$Q_{ww}, Q_{dd}, Q_{cc}, Q_{wc}, Q_{wd}, Q_{dw}, Q_{dc}, Q_{cw}, Q_{cd}$$

For i-th document and j-th concept nodes:

$$\alpha_{ij} = \operatorname{Softmax}\left(\frac{(\mathbf{K}\mathbf{x}_j)^{\top}\mathbf{Q}_{cd}\mathbf{x}_i}{\sqrt{l}}\right)$$

$$\mathbf{h}_i = \sum_{j=1}^n \alpha_{ij} \mathbf{V} \mathbf{x}_j$$



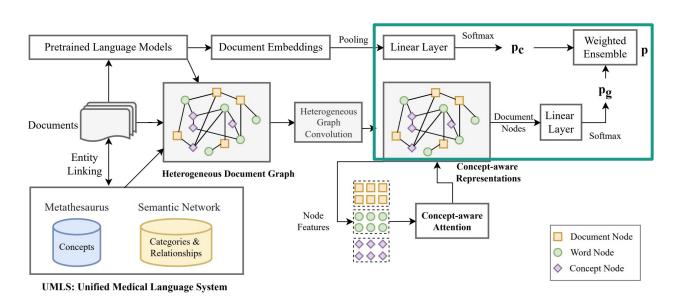
Concept-aware Attention Mechanism

probability of classifying the document: p_g and p_c

 p_g : from concept-aware document embeddings

 p_c : from contextualized embeddings from the pretrained language model

$$\mathbf{p} = \lambda \mathbf{p}_g + (1 - \lambda) \mathbf{p}_c$$



Classification Layers and Model Training

Dataset

Table 1: A statistical summary of datasets

Dataset	Documents	ADE	non-ADE
SMM4H	2,418	1,209	1,209
TwiMed-Pub	1,000	191	809
TwiMed-Twitter	625	232	393
CADEC	7,474	2,478	4,996

- TwiMed-Twitter: from social media
- TwiMed-Pub: from biomedical publications
- SMM4H dataset: from Social Media Mining for Health Applications (#SMM4H) shared tasks
- CADEC dataset: patient-reported posts from a medical forum

Results

Results for two TwiMed datasets:

Models	TwiMed-Pub			TwiMed-Twitter			
Models	P (%)	R (%)	F1 (%)	P (%)	R (%)	F1 (%)	
HTR-MSA (Wu et al., 2018)	75.0	66.0	70.2	60.7	61.7	61.2	
IAN (Alimova and Solovyev, 2018)	87.8	73.8	79.2	83.6	81.3	82.4	
CNN-T (Li et al., 2020)	81.3	63.9	71.6	61.8	60.0	60.9	
MSAM (Zhang et al., 2019)	85.8	85.2	85.3	74.8	85.6	79.9	
ATL (Li et al., 2020)	81.5	67.0	73.4	63.7	63.4	63.5	
CGEM (Gao et al., 2022)	88.4	85.0	86.7	84.2	83.7	83.9	
GPT-4 (OpenAl, 2023)	89.2	85.4	87.0	76.1	85.3	80.1	
KnowCAGE (GCN)	88.8	85.8	87.3	84.1	84.0	84.0	
KnowCAGE (GAT)	89.6	83.4	86.4	84.8	84.1	84.4	
KnowCAGE (DGCNN)	88.7	83.7	86.1	83.5	84.1	83.8	

Results for CADEC dataset:

Models	P (%)	R (%)	F1 (%)
HTR-MSA (Wu et al., 2018)	81.8	77.6	79.7
CNN-T (Li et al., 2020)	84.8	79.4	82.0
ATL (Li et al., 2020)	84.3	81.3	82.8
ANNSA (Zhang et al., 2021)	82.7	83.5	83.1
GPT-4 (OpenAI, 2023)	68.6	83.0	75.1
KnowCAGE (GCN)	86.6	90.8	88.7
KnowCAGE (GAT)	87.1	89.7	88.4
KnowCAGE (DGCNN)	87.1	93.9	90.4

Results for SMM4H dataset:

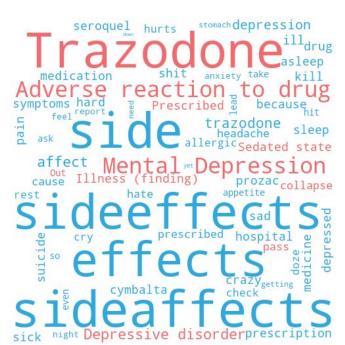
Models	P (%)	R (%)	F1 (%)
BERTweet-LSTM (Kayastha et al., 2021)	81.2	86.2	83.6
RoBERTa-aug (Pimpalkhute et al., 2021)	82.1	85.7	84.3
BERT-LSTM (Yaseen and Langer, 2021)	77.0	72.0	74.0
CGEM (Gao et al., 2022)	86.7	93.4	89.9
GPT-4 (OpenAI, 2023)	62.4	96.7	75.9
KnowCAGE (GCN)	85.3	95.9	90.3
KnowCAGE (GAT)	85.4	94.6	89.8
KnowCAGE (DGCNN)	87.2	97.0	91.8

Effectiveness of the Concept-Aware Attention

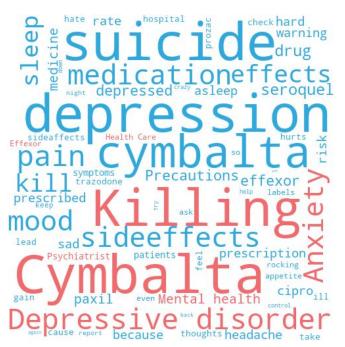
Datasets	dot-p	dot-product attention			structured attention			concept-aware attention		
	P (%)	R (%)	F1 (%)	P (%)	R (%)	F1 (%)	P (%)	R (%)	F1 (%)	
SMM4H	86.0	94.2	89.9	85.0	95.4	89.3	89.9	97.0	91.8	
TwiMed-Pub	87.9	84.5	86.2	88.9	82.9	85.8	88.8	85.8	87.3	
TwiMed-Twitter	84.5	82.2	83.4	83.0	81.8	82.4	84.8	84.1	84.4	
CADEC	86.7	89.1	87.9	84.3	88.2	86.2	87.1	93.9	90.4	

Concept-aware attention consistently achieves the best F1 score on four datasets.

Case Study - Node Cloud



positive example (with ADE): "debating on taking a trazodone and literally passing out for the day"



Red: Concept Nodes

Blue: Word Nodes

Node sizes: contribution when classifying the document

negative example ('without ADE'): "i don't get why they make stuff like cymbalta to decrease the suicide rate, when there are bunch of precautions about how it may kill you."

Conclusion

- Our work focuses on the pragmatic application of medical KG (UMLS), and proposes a simple yet effective integration method of external medical information;
- We introduce concept-aware attention, which is designed to emphasize information in various levels that holds significant connections to the original text. This also contributes to improved model explainability.

Thanks you!