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Context

1. Advanced Multilingual models does not benefit all languages equally.[1][2]
2. They especially fail for low resource languages.
3. ltis often due to lack of data available for these languages. [3][4]



Data Collection

Often done in two ways:

1. Without Assistance
2. With Assistance

a. Interactive
b. Non Interactive



INMT (Interactive Machine Translation)

It is a form of assistive translation where the probability of next token does not
depend on output tokens of previous invocation but instead depend on tokens
being generated by the user.



Cont...

1. Aims to provide “Interactive” assistance during translation
2. Improves yield of data collected
3. Enhances the overall experience of data providers



Problems with INMT

Under resourced language communities often does not have access to internet
and high-end devices.

“INMT often ignores the environment where such system can be used to
increase the yield of data”



INMT-lite

INMT-lite:

1. Adapts to the infrastructural capabilities of the user.

a. Deployed on edge
b. Works without internet
c. Works on a smartphone

2. Provides several user interfaces to account for the quality of underlying
model.
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Models

1. Native (Internet-enabled, uncompressed)
2. Quantized (Internet-Independent, Compressed Model)
3. Distilled (Internet-Independent, Compressed Model)



QM)

Language Data —prer——he—BIFU  ohrF
Punjabi  2.4M 384 506  27.0 480
Gujarati _ 3.0M 359 534 284 514
Marathi 3.3M 27.5 52.7 11.1 40.8
Bengali  84M 249 468 114 351
Hind 85M 377 59.9 271 44.9




M D(M)

Language  Data —prrr— prr—BIEG  ohrF

Gondi 25K 143 325 142 32.8

Assamesse 140K 10.4 30.4 9.6 27.4

Odia 1M 27.4 476 20.2 40.7




Interfaces
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NEXT WORD BOW
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User Study

Conducted an extensive user study with the Gond community in Chattisgarh
province of India. We went through following high level steps:

1. Data collected from 18 annotators for all the interfaces
2. Scoring of the translation by direct assessment (DA) scores
3. Feedback from the annotators



Task Setup

Task Name Interface Task Description
Baseline Default Users provide translations without any assistance.
- Default, Bag of Words  Users provide translations by post-editing or
Assistive : , : : e
and Dropdown using the model’s assistance via each of the assistive interfaces.
Users score the translations generated by users. The highest
Scoring DA Scoring ranked translation here will then further be marked to identify

the best mode.
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Distribution Strategy

Annotator
X al an as a4 as ae
Task

t1 (Sl,il) (Sl,iz) (81,i3) (81,i4) (81,i5) (81,@6)
tz (Sg,iz) (Sz,ig) (82,i4) (82,i5) (82,i6) (Sz,il)
t3 (S3,i3) (S3,i4) (S3,i5) (S3,i6) (83,i1) (83,i2)
t4 (S4,i4) (84,@5) (84,i6) (S4,i1) (84,i2) (84,i3)
ts (85,i5) (85,i6) (85,i1) (85,i2) (S5,i3) (85,@4)
te (se,i6) (s6,%1) (s6,%2) (s6,%3) (S6,%4) (S6,15)



Questions we are trying to answer

1. Does INMT-lite lead to reduction in human effort?

2. How well do the translations generated by INMT-lite compare with those
generated without assistance?

3. Does INMT Lite improve the experience of annotators during data generation



Does INMT-lite lead to reduction in human effort?
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Experience by Annotators

1. Breadth-wise coverage interfaces (SBOW, DBOW and PE) more helpful than

depth-wise coverage interfaces (NBOW).
2. Annotators often prefered typing the suggestion instead of selecting it.
3. The suggestions often helped them jump start their translation.



Future Work

INMT-lite operates on vast set of parameters that needs to be investigated further:

1. Depth of decoding.
2. The number of suggestions shown across each architecture.
3. The trigger of invocation.



Thank You!

https://github.com/microsoft/INMT-lite
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