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Context

1. Advanced Multilingual models does not benefit all languages equally.[1][2]
2. They especially fail for low resource languages.
3. It is often due to lack of data available for these languages. [3][4]



Data Collection

Often done in two ways:

1. Without Assistance
2. With Assistance

a. Interactive
b. Non Interactive



INMT (Interactive Machine Translation)

It is a form of assistive translation where the probability of next token does not 
depend on output tokens of previous invocation but instead depend on tokens 
being generated by the user.



Cont…

1. Aims to provide “Interactive” assistance during translation
2. Improves yield of data collected
3. Enhances the overall experience of data providers



Problems with INMT

Under resourced language communities often does not have access to internet 
and high-end devices.

“INMT often ignores the environment where such system can be used to 
increase the yield of data”



INMT-lite

INMT-lite:

1. Adapts to the infrastructural capabilities of the user.
a. Deployed on edge
b. Works without internet
c. Works on a smartphone

2. Provides several user interfaces to account for the quality of underlying 
model.





Models

1. Native (Internet-enabled, uncompressed)
2. Quantized (Internet-Independent, Compressed Model)
3. Distilled (Internet-Independent, Compressed Model)







Interfaces



POST EDIT



STATIC BOW



DYNAMIC BOW



NEXT WORD BOW



NEXT WORD 
DROPDOWN



User Study

Conducted an extensive user study with the Gond community in Chattisgarh 
province of India. We went through following high level steps:

1. Data collected from 18 annotators for all the interfaces
2. Scoring of the translation by direct assessment (DA) scores
3. Feedback from the annotators



Task Setup





Distribution Strategy



Questions we are trying to answer

1. Does INMT-lite lead to reduction in human effort?
2. How well do the translations generated by INMT-lite compare with those 

generated without assistance?
3. Does INMT Lite improve the experience of annotators during data generation



Does INMT-lite lead to reduction in human effort?



Assistance vs No Assistance



Cont…



Experience by Annotators

1. Breadth-wise coverage interfaces (SBOW, DBOW and PE) more helpful than 
depth-wise coverage interfaces (NBOW).

2. Annotators often prefered typing the suggestion instead of selecting it.
3. The suggestions often helped them jump start their translation.



Future Work

INMT-lite operates on vast set of parameters that needs to be investigated further:

1. Depth of decoding.
2. The number of suggestions shown across each architecture.
3. The trigger of invocation.



Thank You!

https://github.com/microsoft/INMT-lite
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