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Motivation

AlphaFold uses the proteins with high MSA scores as
augmented data to predict the 3D structures. Its input is
not in the form of protein sequence but the alignment
results produced by the MSA algorithms.

Even closely related proteins may have different lengths,
encoding and non-encoding regions.

Different amino acids can be also replaced with each
other safely in certain circumstances.

The alignment algorithms (e.g. Smith-Waterman) aim to
find an alignment path with maximal score to support the
comparison between proteins.
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Figure 2: A comparison between MSA and se-
mantic neighbors. The left figure is sliced from
AlphaFold (Jumper et al., 2021). The right figure is
an example from WordNet (Miller, 1995).

ZHEJIANG UNIVERSITY



Method
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For structural encoding, we use the standard Transformer layer to encode the structural neighbors.
For semantic encoding, we use the semantic operator to find and encode the semantic neighbors.

The dual encoding ensures both local aggregation and global connection, and also enables them to
benefit from each other through back propagation.
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DET block starts from a structural encoding layer whose
output embeddings will contain the local neighborhood
information, functioning like encoding the amino acid
sequences of proteins.

Then, the following semantic encoding layer will estimate
the importance of the = family members" by their local
context information.

By alternative stacking these two layers, these two types
of encoding layers can support and enrich each other.
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Figure 3: Example of a two-layer DET. The struc-
tural encoder and semantic encoder are stacked
alternatively and feed with their neighborhood infor-

mation respectively.
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Two Hypothesizes

Hypothesis 1. The local neighbors are the most Hypothesis 2. The distant nodes with high mutual
informative features to identify and represent the information scores are important features to identify
node of interest. and represent the node of interest.

Algorithm 1 Dual-encoding Transformer

1: Input: the input graph ¢ = (V, &), the main
prediction 0SS Lmain, the DET model M;
2: Initialize all parameters;

3: repeat
Table 1: The occurrence frequency of entities in 4: Il:)deate the semantic neighbors if necessary;
FB15K-237 and WN18RR, in term of hops.
5:  for each batch data (X,Y’) do
Dataset 1-hop  2-hop 3-hop 5-hop 6: H + X;
WN18RR 2.7 8.9 305 48338 7 for each DET block (M*, M*) do
FB15K-237  20.3 1781.4 64,774.9 - 8: H + M*'(H) (Equation (3));
9: H + M*¢(H) (Equation (7));
10: end for
11: L Lonain(H.Y) + Len(H);
12: Update the parameters of M;

13:  end for
14: until the loss L converges;
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Experiments

Table 2: The entity prediction results on FB15K-237 and WN18RR. The results of the baselines are
extracted from (Bi et al., 2022). The best and second-best results are boldfaced and underlined, respec-
tively. T: higher is better; |: lower is better. -: unavailable entry.

Graph property prediction

Table 2: Graph property prediction results on the
PCQM4M-LSC dataset.

Model #param. train MAE  validate MAE Model FB15K-237 WN18RR
GCN 2.0M 0.1318 0.1691 MRRT MR, Hits@it Hits@10t MRRT MR, His@1t Hits@10t
DeeperGCN  25.5M 0.1059 0.1398 TransE (Bordes et al., 2013) 310 199 218 495 232 5249 061 522
Gt‘aphSage - - - RotatE (Sun et al., 2019) .338 177 .241 533 476 3,340 428 571
GIN 3.8M 0.1203 0.1537 TuckER (Balazevic et al., 2019) .358 - .266 544 470 - 443 526
GT 83.2M 0.0955 0.1408 RGCN (Schlichtkrull et al., 2018) .273 221 182 .456 402 2,719 .345 494
] CoKE (Wang et al., 2019) 364 - 272 549 484 - 450 553
Graphormer — 47.1M 0.0582 0.1234 CompGCN (Vashishth et al., 2020)  .355 197 264 535 479 3,533 443 546
DET 47.1M 0.0546 0.1212 Relphormer (Bi et al., 2022) 371 - 314 .481 .495 - 448 591
DET 376 150 281 560 507 2,255 465 585
Table 3: Graph property prediction re- Table 3: The accuracy results of pode classification on five benchmarks.
sults on the ZINC dataset. oqge cliasSsirica tlon
Model #param.  test MAE Model Corat Citeseert Pumbedt Computert Photot
GCN 505.079 0.367 GCN (Kipf and Welling, 2017) 87.33+0.38  79.43+0.26 84.8640.19 89.65+052  92.70-0.20
GraphSage 505,341 0398 GraphSage (Hamilton et al., 2017)  86.90+0.94  79.234-0.53 86.194+0.18  90.224+0.15  91.7240.13
=} ~U :
GIN 509,549 0.526 GAT (Velickovic et al., 2018) 86.29+0.53 80.13+£0.62 84.404+0.05 90.7840.13  93.87+0.11
G — 354 GT (Dwivedi and Bresson, 2021)  71.84+0.62 67.3840.76  82.114+0.39 91.1840.17  94.7440.13
AT 231,345 0.384 SuperGAT (Kim and Oh, 2021) 827040.60 72.50+0.80 81.3040.50 77.44+0.26  84.53+0.32
GT 588.929 0.226 SAN (Kreuzer et al., 2021) 74.0241.01  70.64+0.97 86.224+0.43 89.83+0.16  94.8640.10
Graphormer 489,321 0.122 Graphormer (Ying et al., 2021) 72.85+£0.76  66.2140.83  82.76+0.24 OOM 92.7440.14
DET 13950 013 Gophormer (Zhao et al., 2021) 87.854+0.10  80.23+0.09 89.404+0.14 90.72+0.24  95.39+0.18
— NAGphormer (Chen et al., 2023) 88.15+0.22 80.1240.23 89.704+0.19 91.2240.14  95.490.11
DET 90.64+0.27 80.14+0.35 89.96+0.20 92.15+0.11  95.81+0.13
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Analysis
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Figure 5: The training time (hours/minutes) of DET  Figure 6: The performance of DET with different
and DET w/o semantic encoding on six datasets. semantic estimators on FB15K-237.
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Analysis
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Figure 4. Examples of the semantic attention scores to different types of neighbors.
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Conclusion T

* In this paper, we propose DET which achieves state-of-the-art
performance across 9 different datasets.

* In DET, the structural encoder aggregates local nodes while the
semantic encoder seeks for the remote nodes. Inspired by recent
advances in biological sciences, DET finds the semantic
neighbors with a mutual-information-based operator and
stacks the two encoders alternatively.

* Bring more insights and inspirations in developing new
Transformer architectures.
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Thanks for your attention!

B Code and datasets are available at
https://github.com/zjukg/DET
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