
Typos Correction Training Against Misspellings
from Text-to-Text Transformers

Guicai Xie1, Ke Zhang1, Lei Duan2, Wei Zhang1, Zeqian Huang1

1Machine Learning Platform Department, Tencent Inc., China
2School of Computer Science, Sichuan University, Chengdu, China

20-25 May, 2024

Contents

1. Background

2. Motivation

3. Our method: ToCoTR

4. Results & Analysis

5. Conclusions

Background

- Misspelling Queries

• Rand-(Insert, Delete, Sub): Randomly inserts, deletes, or
substitutes a random character. e.g., typo → {typos, typ, type}

• SwapNeighbor: Randomly swaps a character with one of its
neighbor characters, e.g., typo → tyop.

• SwapAdjacent: Randomly swaps a character with one of its
adjacent letter on the QWERTY keyboard, e.g., typo → typp.

MRR@10 and R@1000 results on MSMARCO.
A significant drop in effectiveness across different

types of simulated typos on queries.

p1

p2

p3

p4 p5

Original Query Ranking:
⟨𝑝!, 𝑝", 𝑝#, 𝑝$, ⟩𝑝%

Misspelled Query Ranking:
⟨𝑝%, 𝑝$, 𝑝#, 𝑝", ⟩𝑝!

- Ranking Performance in “Drop”
Typoed queries resulting from the users’ mistyping words or
phonetic typing errors exist widely in search behaviors.

Background

- Misspelling Queries

• Rand-(Insert, Delete, Sub): Randomly inserts, deletes, or
substitutes a random character. e.g., typo → {typos, typ, type}

• SwapNeighbor: Randomly swaps a character with one of its
neighbor characters, e.g., typo → tyop.

• SwapAdjacent: Randomly swaps a character with one of its
adjacent letter on the QWERTY keyboard, e.g., typo → typp.

MRR@10 and R@1000 results on MSMARCO.
A significant drop in effectiveness across different

types of simulated typos on queries.

p1

p2

p3

p4 p5

Original Query Ranking:
⟨𝑝!, 𝑝", 𝑝#, 𝑝$, ⟩𝑝%

Misspelled Query Ranking:
⟨𝑝%, 𝑝$, 𝑝#, 𝑝", ⟩𝑝!

- Ranking Performance in “Drop”
Typoed queries resulting from the users’ mistyping words or
phonetic typing errors exist widely in search behaviors.

Motivation

- Existing Methods

p1

p2

p3

p4 p5

Original Query Ranking:
⟨𝑝!, 𝑝", 𝑝#, 𝑝$, ⟩𝑝%

Misspelled Query Ranking:
⟨𝑝%, 𝑝$, 𝑝#, 𝑝", ⟩𝑝!

Maximize
agreement

• Data augmentation: BERT + Aug

• Contrastive learning to push a typoed query close to its original variation: BERT + Aug + CL

• Self-teaching with supervised label in KL-divergence: CharacterBERT + ST

• Local ranking alignment: RoDR

Misspelled Query

Original Query

Recover Spell Checker

Industry soulution

Observation 1: Simply aligning the latent embeddings or ranking differences between the original and misspelled queries is
inadequate for sophisticated training retrievers such as coCondenser and SimLM.

Observation 2: The spell-checker and dense retriever are optimized as separate models. If the spell-checker is subpar, this will
result in a decreased ranking performance.

Motivation

- Existing Methods

p1

p2

p3

p4 p5

Original Query Ranking:
⟨𝑝!, 𝑝", 𝑝#, 𝑝$, ⟩𝑝%

Misspelling Query Ranking:
⟨𝑝%, 𝑝$, 𝑝#, 𝑝", ⟩𝑝!

Maximize
agreement

• Data augmentation: BERT + Aug

• Contrastive learning to push a query close to its typoed variation: BERT + Aug + CL

• Self-teaching with supervised label in KL-divergence: CharacterBERT + ST

• Local ranking alignment: RoDR

Original Query

Misspelling Query

Recover Spell Checker

Industry soulution

Observation 1: Simply aligning the latent embeddings or ranking differences between the original and misspelled queries is
inadequate for sophisticated training retrievers such as coCondenser and SimLM.

Observation 2: The spell-checker and dense retriever are optimized as separate models. If the spell-checker is subpar, this will
result in a decreased ranking performance.

How to effectively incorporate the spelling correction objective into the dual-encoder dense retriever?
• Base model selection?
• How to improve the effectiveness of the spell correction?
• Training strategy?

Our method: ToCoTR

- Base model selection

• Spelling correction is formulated as a monolingual translation task and treated with an encoder-decoder based model[1].

• The encoder-decoder sentence embedding model have proved to be a promising architecture[2].

[1] Rothe S, Mallinson J, Malmi E, et al. A Simple Recipe for Multilingual Grammatical Error Correction. ACL 2021.
[2] Ni J, Abrego G H, Constant N, et al. Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models. ACL (Findings) 2022.

En
co
de
r

D
ec
od
er

x1 x2 x3 x4

y1 y2 .

En
co
de
r

D
ec
od
er

x1 x2 x3 x4

y1 y2 .

T5 Encoder-Decoder
(Spell Correction)

T5 Encoder-Decoder First
(Sentence Embedding)

• The T5-style model does not place a special symbol (e.g.,
[CLS] in BERT) at the beginning of the text sequence.

• To obtain the decoder output, the input text is fed into
the encoder, and the standard “start” symbol (first token)
is fed as the first decoder input.

- Prompt-based typos correction training

Add special symbols to the selected typo token according to the
augmentation template “<h> [X] </h>” to highlight the errors;

S1: Given a set of context 𝐶 = {𝑋!, 𝑋", … , 𝑋 & } and randomly sampling
samples to conduct the prompt-based typos generation at a predetermined
rate value (in our experiment, the rate equals 80%);

S2: For each selected source text 𝑋' = 𝑥!, 𝑥", … , 𝑥(, choose 𝛼 𝑋' token
positions at random to simulate typos;

There's no right answer. There'is no right abswer.

S3: If the 𝑡-th token is chosen then use a randomly selected typos generator to
inject the typos, including RandInsert, RandDelete, RandSub,
SwapNeighbor, SwapAdjacent;

There’s
answer.

There’is
abswer.

RandInsert

SwapAdjacent

Typos Simulation

select token

S4:

There’is <h> There'is </h> abswer. <h> abswer. </h>

S5: Training with ℒtoco

Our method: ToCoTR

- Dual-encoder architecture

• Given a query 𝑞), passage retrieval aims to return a sorted
list of the 𝑛 most relevant passages 𝐿 = [𝑝!, 𝑝", … , 𝑝+] from
a large set 𝐷 = {𝑝)}),!- according to the relevance score of
the retrieval model.

• For dense retriever training, we assume a set of binary
positive correlation judgments as supervised signals,
denoted by

𝑅 = 𝑞), 𝑝)., {𝑝),!/ , 𝑝),"/ , … , 𝑝),0/ }
where 𝑝). denotes the relevant passages and 𝑝)/ denotes
the irrelevant passages for query 𝑞).

• To optimize the dense retriever, the negative log-likelihood
(NLL) loss is applied:

Our method: ToCoTR

- Training strategy

Query PassageTypo Query
𝑋!"#$ 𝑋v positive 𝑝%

neg 1 𝑝&'…

𝑋!"#$ 𝑋

neg s 𝑝('

𝑝%
𝑝&'

𝑝('

Decoder

Decoder First

ℒ!$)$ ℒ*+++

Joint Training

Shared
parameters

Typo Text
𝑋!"#$v

Query
𝑋

Passage
positive 𝑝%

neg 1 𝑝&'…
neg s 𝑝('

Text
𝑋

ℒ!$)$

ℒ*++

𝛽

Two-stage Training

T5 Encoder-Decoder

T5 Encoder-Decoder First

Stage 1

Stage 2

Initialize

Two different training strategies:
• Joint training (Left)
• Two-stage training (Right)

Each training strategies can be
coupled with existing training
techniques:
• Self-teaching
• Hard-Negative mining

Our method: ToCoTR

Results & Analysis

- Datasets

• MSMARCO
Source: queries sampled from Bing search logs and annotated with binary relevant passages
Typo Query: randomly generated 10 sets by repeating the typos simulation

• TREC 2019
Source: queries sampled from Bing search logs and annotated with four-level relevant annotations (Same corpus with MSMARCO)
Typo Query: randomly generated 10 sets by repeating the typos simulation

• ANTIQUE (zero-shot validate)
Source: non-factual questions and answers from a community answering service, where questions and answers are manual four-
level relevance annotations
Typo Query: sampling three misspelling variations from manually validated typoed questions by released researchers, including
SwapNeighbor, SwapAdjacent, RandSub

- Comparison with the retrievers

Results & Analysis

‡ indicate significant differences with the second-best score (underlined) at p-value < 0.05

- Comparison with the retrievers involving spell-checkers

Results & Analysis

• pyspellchecker: a rule-based spell-checking toolkit that relies on dictionary-based rule sets;

• MS-Spellchecker: Microsoft Bing Spell Check API, it utilizes machine learning and statistical machine translation
to provide corrections;

• GG-Spellchecker: Google Search API, it has been shown in previous research to be possibly the most useful spell
corrections[1];

[1] Hagen M, Potthast M, Gohsen M, et al. A large-scale query spelling correction corpus. ACM SIGIR 2017.

‡ indicate significant differences with the second-best score (underlined) at p-value < 0.05

Results & Analysis

- Ablation study

- Analysis on typos correction training
Joint or Two-stage? The impact of the number of typos (𝜶).

The more typos injected, the
worse performance becomes.

The proportion of typos per
input text 𝛼 is set as 0.2.

• Without typos correction training (namely, w/o ToCo), the performance
of ToCoTR on both original and typoed queries is greatly affected.

• The adaption of hard negative mining can demonstrate why advanced
retrievers with sophisticated training can outperform most typos-aware
retrievers.

Statistically significant drops at p-value < 0.05 are marked with ↓.

Results & Analysis

- Latency Analysis - Drop rate in different simulated typos

• ToCoTR can reach a smaller drop rate from original query set to
various misspelled query variations.

• Different retrievers exhibit varying degrees of performance
degradation with different simulated typos: ToCoTR with
RandSub, coCondenser and SimLM with SwapNeighbor.

Conclusion

• We explore different incorporating strategies to conduct typos correction training. This establishes a
feasible and effective approach that explicitly incorporates typos correction training into the training
pipeline of dense retrieval.

• We propose a simple yet effective prompt-based augmentation technique to enhance the typos correction
training. It adaptively realizes the alignment of typoed words to correct words and reduces the difference
between typed query embedding and its corresponding correct query embedding.

• We conduct a comprehensive comparison study to show the retrieval effectiveness of ToCoTR on queries
with typos across three benchmark datasets. It outperforms those with typos-aware training retrievers and
even outperforms the combining solutions involving some advanced spell checkers for dense retrievals.

Thanks

