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Background

- Misspelling Queries

• Rand-(Insert, Delete, Sub): Randomly inserts, deletes, or 
substitutes a random character. e.g., typo → {typos, typ, type}

• SwapNeighbor: Randomly swaps a character with one of its 
neighbor characters, e.g., typo → tyop.

• SwapAdjacent: Randomly swaps a character with one of its 
adjacent letter on the QWERTY keyboard, e.g., typo → typp.

MRR@10 and R@1000 results on MSMARCO.
A significant drop in effectiveness across different

types of simulated typos on queries.
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Original Query Ranking: 
⟨𝑝!, 𝑝", 𝑝#, 𝑝$, ⟩𝑝%

Misspelled Query Ranking: 
⟨𝑝%, 𝑝$, 𝑝#, 𝑝", ⟩𝑝!

- Ranking Performance in “Drop”
Typoed queries resulting from the users’ mistyping words or 
phonetic typing errors exist widely in search behaviors.
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Motivation

- Existing Methods
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Original Query Ranking: 
⟨𝑝!, 𝑝", 𝑝#, 𝑝$, ⟩𝑝%

Misspelled Query Ranking: 
⟨𝑝%, 𝑝$, 𝑝#, 𝑝", ⟩𝑝!

Maximize 
agreement

• Data augmentation: BERT + Aug

• Contrastive learning to push a typoed query close to its original variation: BERT + Aug + CL

• Self-teaching with supervised label in KL-divergence: CharacterBERT + ST

• Local ranking alignment: RoDR

Misspelled Query

Original Query

Recover Spell Checker

Industry soulution

Observation 1: Simply aligning the latent embeddings or ranking differences between the original and misspelled queries is 
inadequate for sophisticated training retrievers such as coCondenser and SimLM.

Observation 2: The spell-checker and dense retriever are optimized as separate models. If the spell-checker is subpar, this will 
result in a decreased ranking performance.
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How to effectively incorporate the spelling correction objective into the dual-encoder dense retriever?
• Base model selection?
• How to improve the effectiveness of the spell correction?
• Training strategy?



Our method: ToCoTR

- Base model selection

• Spelling correction is formulated as a monolingual translation task and treated with an encoder-decoder based model[1].

• The encoder-decoder sentence embedding model have proved to be a promising architecture[2].

[1] Rothe S, Mallinson J, Malmi E, et al. A Simple Recipe for Multilingual Grammatical Error Correction. ACL 2021.
[2] Ni J, Abrego G H, Constant N, et al. Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models. ACL (Findings) 2022.
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T5 Encoder-Decoder
(Spell Correction)

T5 Encoder-Decoder First
(Sentence Embedding)

• The T5-style model does not place a special symbol (e.g., 
[CLS] in BERT) at the beginning of the text sequence.

• To obtain the decoder output, the input text is fed into 
the encoder, and the standard “start” symbol (first token) 
is fed as the first decoder input.



- Prompt-based typos correction training

Add special symbols to the selected typo token according to the 
augmentation template “<h> [X] </h>” to highlight the errors;

S1: Given a set of context 𝐶 = {𝑋!, 𝑋", … , 𝑋 & }  and randomly sampling
samples to conduct the prompt-based typos generation at a predetermined
rate value (in our experiment, the rate equals 80%);

S2: For each selected source text 𝑋' = 𝑥!, 𝑥", … , 𝑥( , choose 𝛼 𝑋' token 
positions at random to simulate typos;

There's no right answer. There'is no right abswer.

S3: If the 𝑡-th token is chosen then use a randomly selected typos generator to 
inject the typos, including RandInsert, RandDelete, RandSub, 
SwapNeighbor, SwapAdjacent;

There’s
answer. 

There’is
abswer. 

RandInsert

SwapAdjacent

Typos Simulation

select token

S4:

There’is <h> There'is </h> abswer. <h> abswer. </h>

S5: Training with ℒtoco

Our method: ToCoTR



- Dual-encoder architecture

• Given a query 𝑞), passage retrieval aims to return a sorted
list of the 𝑛 most relevant passages 𝐿 = [𝑝!, 𝑝", … , 𝑝+] from
a large set 𝐷 = {𝑝)}),!- according to the relevance score of
the retrieval model.

• For dense retriever training, we assume a set of binary 
positive correlation judgments as supervised signals, 
denoted by

𝑅 = 𝑞), 𝑝)., {𝑝),!/ , 𝑝),"/ , … , 𝑝),0/ }
where 𝑝). denotes the relevant passages and 𝑝)/ denotes 
the irrelevant passages for query 𝑞).

• To optimize the dense retriever, the negative log-likelihood 
(NLL) loss is applied: 

Our method: ToCoTR



- Training strategy
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Two-stage Training

T5 Encoder-Decoder

T5 Encoder-Decoder First

Stage 1
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Initialize

Two different training strategies:
• Joint training (Left)
• Two-stage training (Right)

Each training strategies can be
coupled with existing training
techniques:
• Self-teaching
• Hard-Negative mining

Our method: ToCoTR



Results & Analysis

- Datasets

• MSMARCO
Source: queries sampled from Bing search logs and annotated with binary relevant passages
Typo Query: randomly generated 10 sets by repeating the typos simulation

• TREC 2019
Source: queries sampled from Bing search logs and annotated with four-level relevant annotations (Same corpus with MSMARCO)
Typo Query: randomly generated 10 sets by repeating the typos simulation

• ANTIQUE (zero-shot validate)
Source: non-factual questions and answers from a community answering service, where questions and answers are manual four-
level relevance annotations
Typo Query: sampling three misspelling variations from manually validated typoed questions by released researchers, including 
SwapNeighbor, SwapAdjacent, RandSub



- Comparison with the retrievers 

Results & Analysis

‡ indicate significant differences with the second-best score (underlined) at p-value < 0.05



- Comparison with the retrievers involving spell-checkers

Results & Analysis

• pyspellchecker: a rule-based spell-checking toolkit that relies on dictionary-based rule sets;

• MS-Spellchecker: Microsoft Bing Spell Check API, it utilizes machine learning and statistical machine translation 
to provide corrections;

• GG-Spellchecker: Google Search API, it has been shown in previous research to be possibly the most useful spell 
corrections[1];

[1] Hagen M, Potthast M, Gohsen M, et al. A large-scale query spelling correction corpus. ACM SIGIR 2017.

‡ indicate significant differences with the second-best score (underlined) at p-value < 0.05



Results & Analysis

- Ablation study

- Analysis on typos correction training 
Joint or Two-stage? The impact of the number of typos (𝜶). 

The more typos injected, the 
worse performance becomes.

The proportion of typos per 
input text 𝛼 is set as 0.2.

• Without typos correction training (namely, w/o ToCo), the performance 
of ToCoTR on both original and typoed queries is greatly affected.

• The adaption of hard negative mining can demonstrate why advanced 
retrievers with sophisticated training can outperform most typos-aware 
retrievers.

Statistically significant drops at p-value < 0.05 are marked with ↓.



Results & Analysis

- Latency Analysis - Drop rate in different simulated typos 

• ToCoTR can reach a smaller drop rate from original query set to 
various misspelled query variations.

• Different retrievers exhibit varying degrees of performance 
degradation with different simulated typos: ToCoTR with 
RandSub, coCondenser and SimLM with SwapNeighbor.



Conclusion

• We explore different incorporating strategies to conduct typos correction training. This establishes a 
feasible and effective approach that explicitly incorporates typos correction training into the training 
pipeline of dense retrieval.

• We propose a simple yet effective prompt-based augmentation technique to enhance the typos correction 
training. It adaptively realizes the alignment of typoed words to correct words and reduces the difference 
between typed query embedding and its corresponding correct query embedding.

• We conduct a comprehensive comparison study to show the retrieval effectiveness of ToCoTR on queries 
with typos across three benchmark datasets. It outperforms those with typos-aware training retrievers and 
even outperforms the combining solutions involving some advanced spell checkers for dense retrievals.
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