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How to incrementally 
train the model using 
these new samples.
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Train Memory & New samples with the 
same status would bring model bias. 

Strict Limitation may limit the 
ability to learn new relations.
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A unified Task or Decoupled Tasks?

Data Bias Brings Model Bias.

Imbalance in old and new data1
1

2

3

One task can influence the other.

Historical tasks BEST POINT when unaffected by 
new data types. 

Balance Space of Best Keep and Best learn 
because of imbalances in the replay set.
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04 Our Contributions

Our DecouPled Contributions for Continual Relation Extraction:

[Balancing CRE with Multi-task Learning]  
                  Prior Information Preservation and New Knowledge Acquisition

[Decoupling to Mitigate Overfitting]
                  Conserve the memory structural information

[Empirical Validation of DP-CRE]  
                  Experiment results demonstrate the SOTA accuracy.
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Initial learning of     

Finetune the model using new samples throngh.

[Cross Entropy Loss]  
&

[Supervised Contrastive Loss]   

kT



05 Methodology of DP-CRE

DP CRE: Decoupled Contrastive Learning to Acquire New Knowledge 

kTRepaly learning of

Task1 : New Knowledge Acquisition



05 Methodology of DP-CRE

DP CRE: Decoupled Contrastive Learning to Acquire New Knowledge 

kTRepaly learning of

Task1 : New Knowledge Acquisition

[Cross Entropy Loss] 

             



05 Methodology of DP-CRE

DP CRE: Decoupled Contrastive Learning to Acquire New Knowledge 

kTRepaly learning of

Task1 : New Knowledge Acquisition

[Cross Entropy Loss] 

                &

[Decoupled Contrastive Loss]  



05 Methodology of DP-CRE

DP CRE: Decoupled Contrastive Learning to Acquire New Knowledge 

kTRepaly learning of

Task1 : New Knowledge Acquisition

[Cross Entropy Loss] 

                &

[Decoupled Contrastive Loss]  

ONLY as Negative Samples
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DP-CRE: Main Performance

More significant enhancement in the later CRE tasks. 
DP-CRE accumulate advantages  when facing denser feature space and more imbalanced tasks number.

1

1
2
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1 DP-CRE outperforms previous CRE work. 
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DP-CRE: Modules Ablation Study

TACRED dataset consists of a larger number of conflicting relation types,
CA-Limit more significant in handling frequent embedding changes.

 ∆ accuracy (%) .
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06 Experimental Results of DP-CRE

DP-CRE: Influence of Memory Size

Additional memory samples providing more 
information.
 
Change amount for each memory sample individually 
make more memory samples information used.
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DP-CRE: Task Balance Experiment

New and old tasks calculated separately. 

 ∆F1 of the CRE model and the regular RE model. 
Prevents any over-bias towards either side in case of conflicts, thereby ensuring a balanced model.
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DP-CRE: Training Time Discussion

Reduce the training time and the cost  .

1

1

2

2

2
A minor reduction in accuracy

1



07 Conclusion

DP-CRE

     
Balance prior information preservation and new knowledge acquisition.

Monitor the changes in embedding and maintain the structural 
information of memory samples. 

Enhance the performance of SOTA CRE models.


