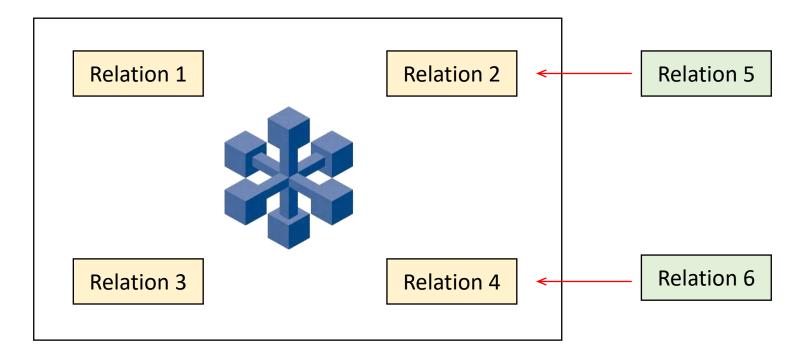

DP-CRE: Continual Relation Extraction via Decoupled Contrastive Learning and Memory Structure Preservation

Mengyi Huang^{1,2,†}, Meng Xiao^{1,†}, Ludi Wang^{1,*}, Yi Du^{1,2,3,*}

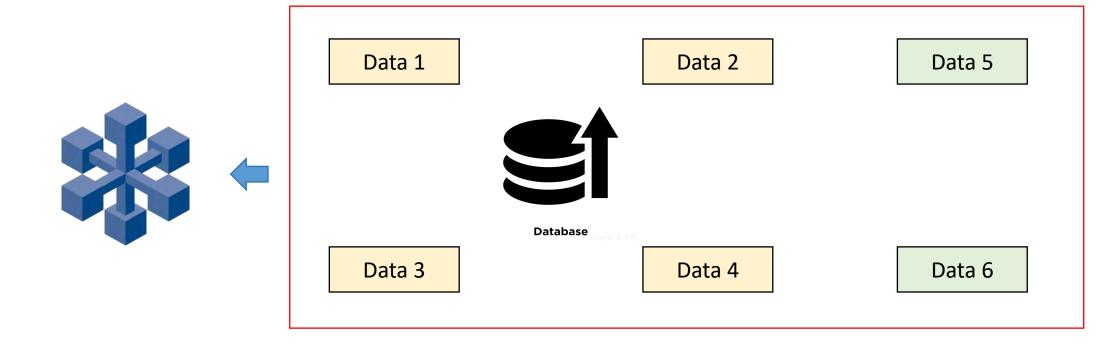
¹Computer Network Information Center, Chinese Academy of Sciences ²University of Chinese Academy of Sciences ³Hangzhou Institute for Advanced Study, UCAS

01 Target and Motivation

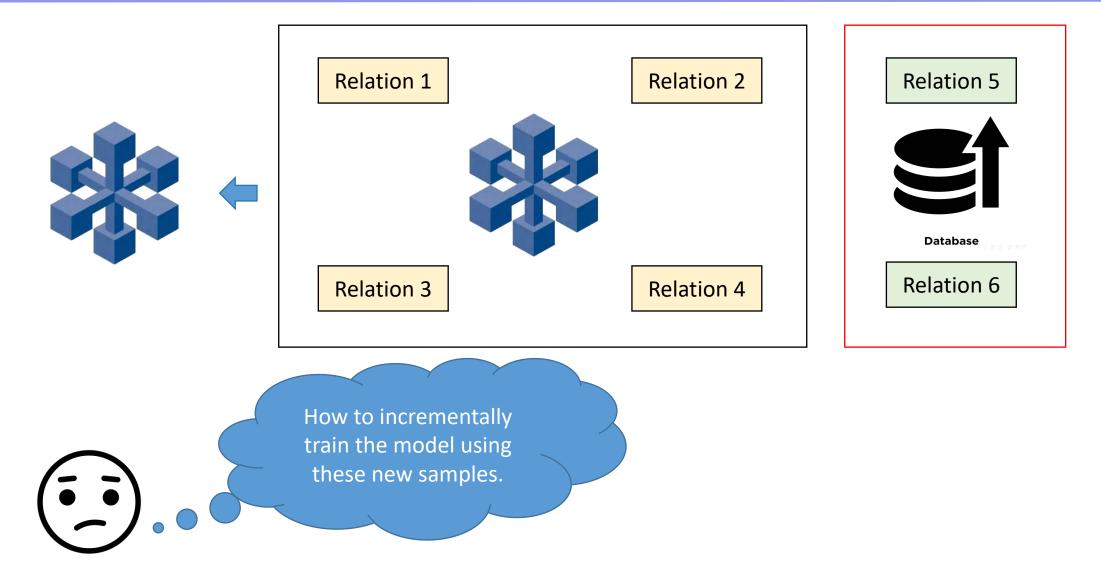


Trained model for Relation 1&2&3&4

01) Target and Motivation

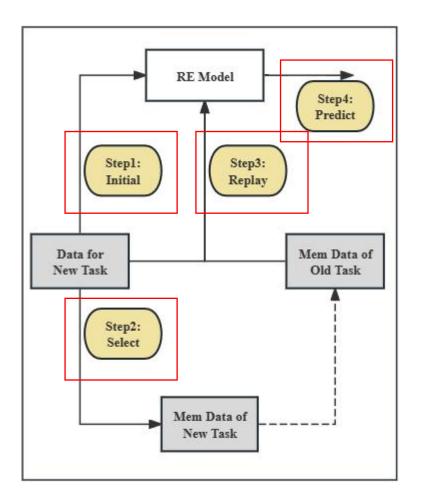


Expand the model Relation 1&2&3&4 and 5&6

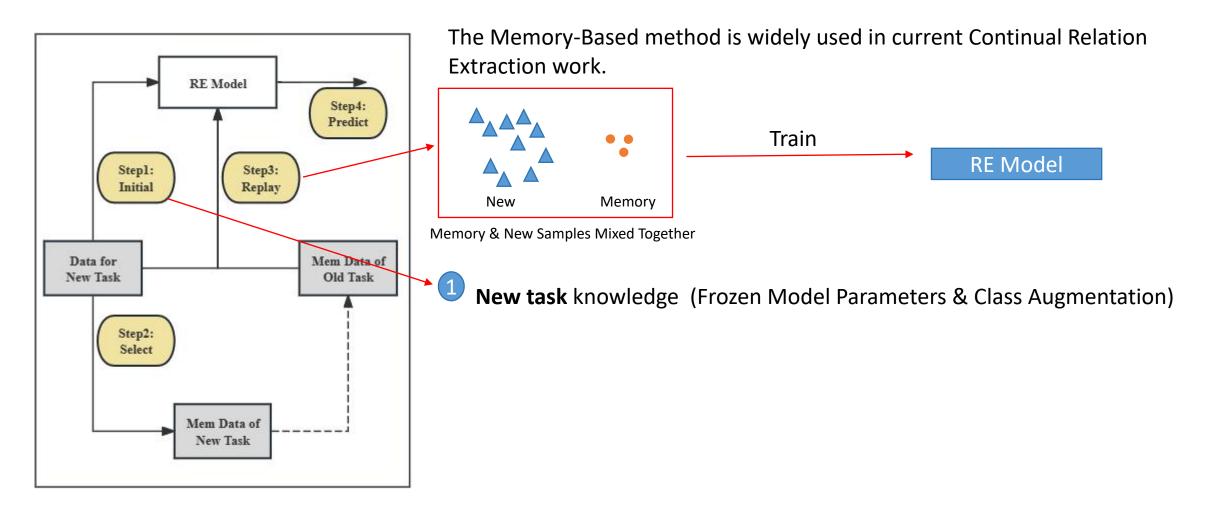


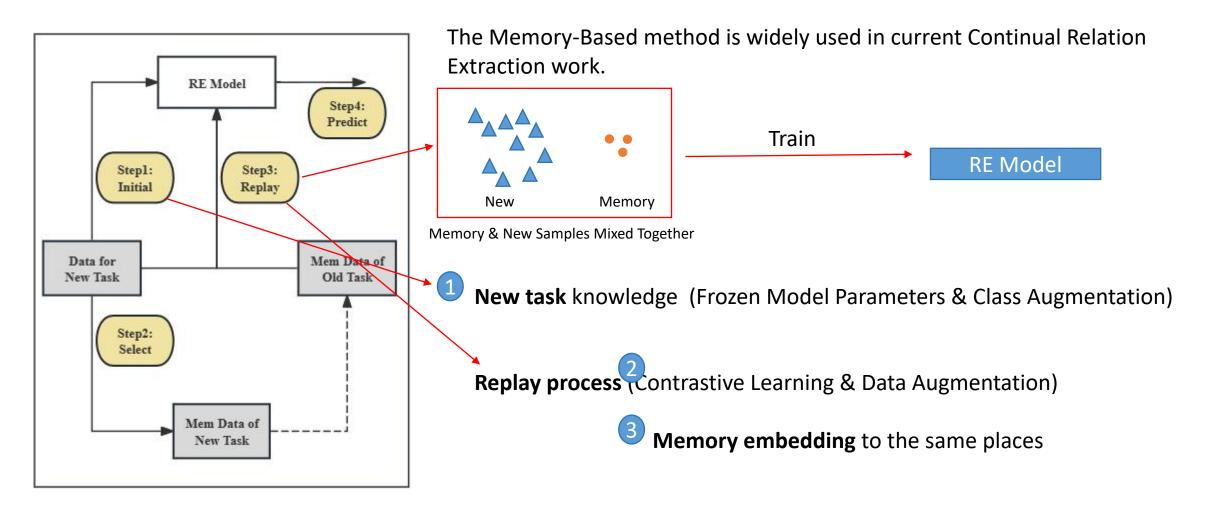
Retraining the model

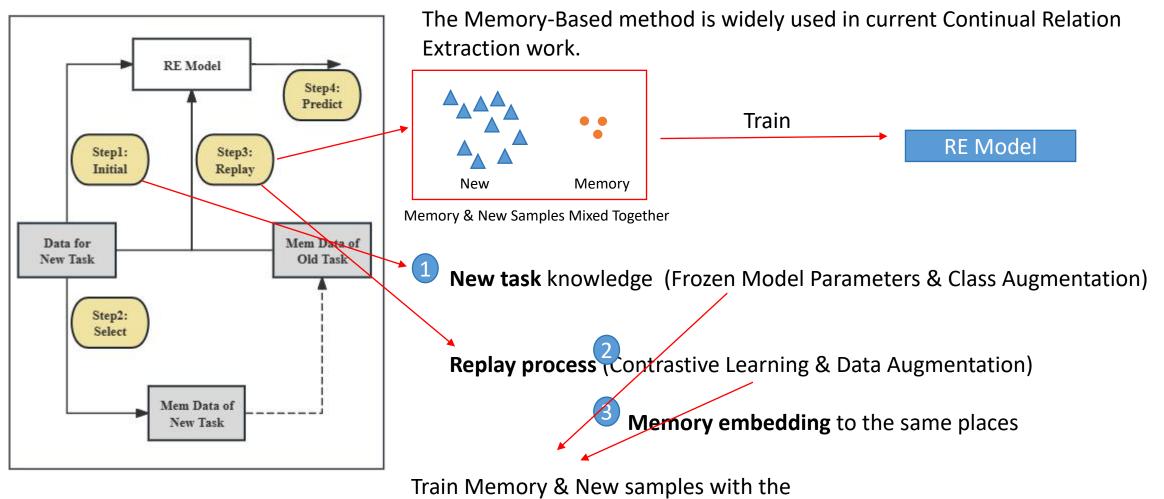
Constraints in **storage** and **computational** resources

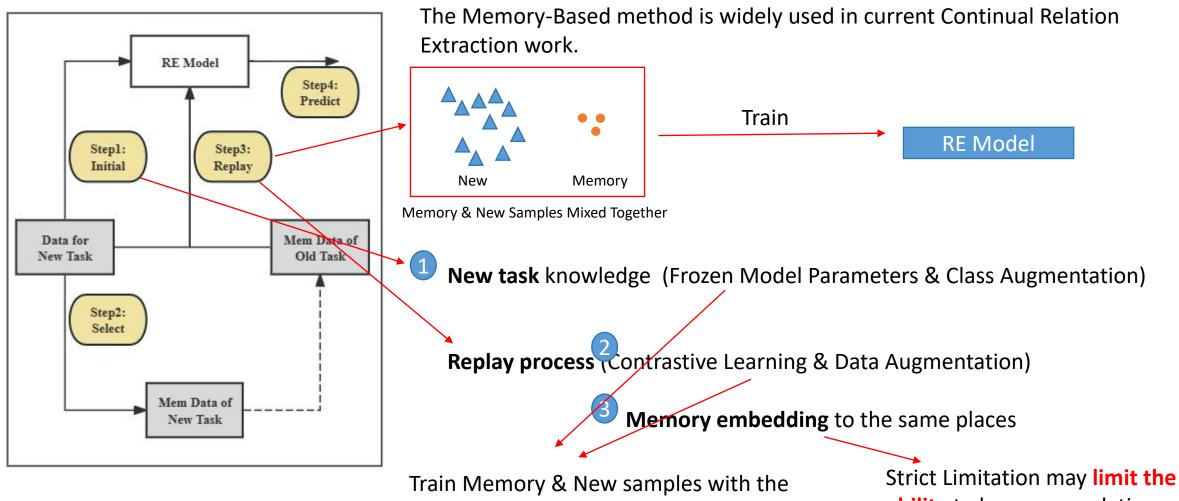

01) Target and Motivation

The **Memory-Based method** is widely used in current Continual Relation Extraction work.

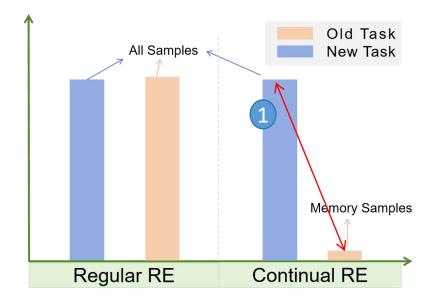


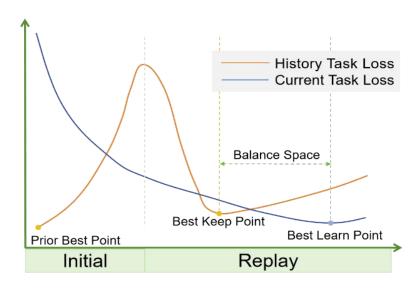




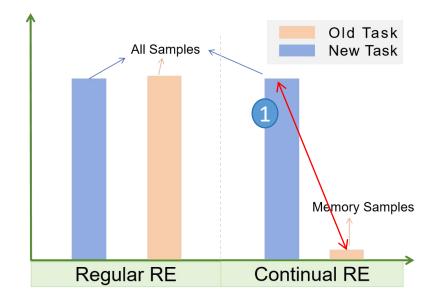


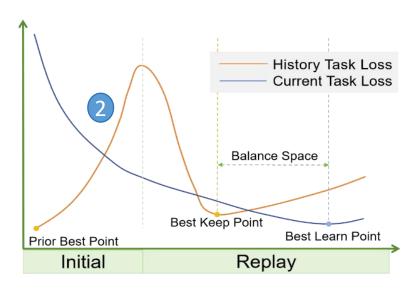
same status would bring model bias.


same status would bring model bias.


ability to learn new relations.

Imbalance in old and new data

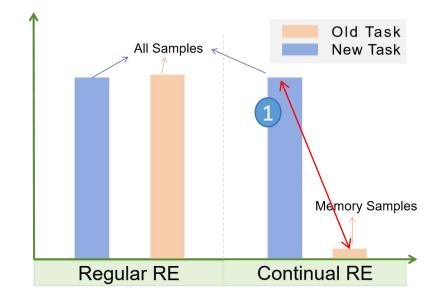


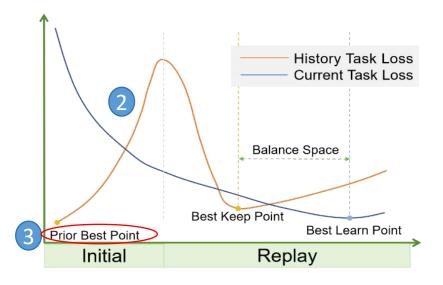


1		Imba	lance	in	old	and	new	dat
(1)	J	Imba	lance	in	old	and	new	dat

A unified Task or Decoupled Tasks?

One task can influence the other.

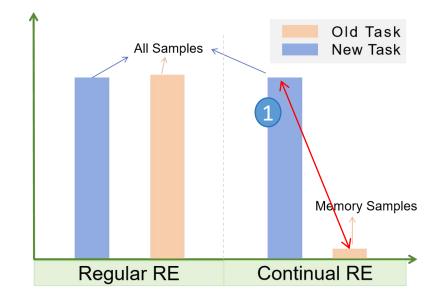


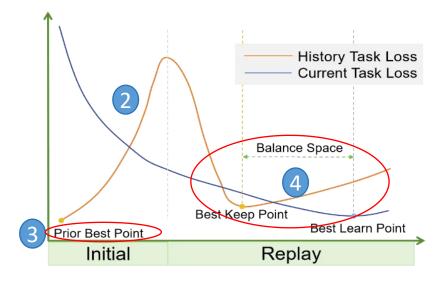


Imbalance in old and new data

A unified Task or Decoupled Tasks?

- One task can influence the other.
- 3 Historical tasks BEST POINT when unaffected by new data types.





Imbalance in old and new data

A unified Task or Decoupled Tasks?

- One task can influence the other.
- 3 Historical tasks BEST POINT when unaffected by new data types.
- Balance Space of Best Keep and Best learn because of imbalances in the replay set.

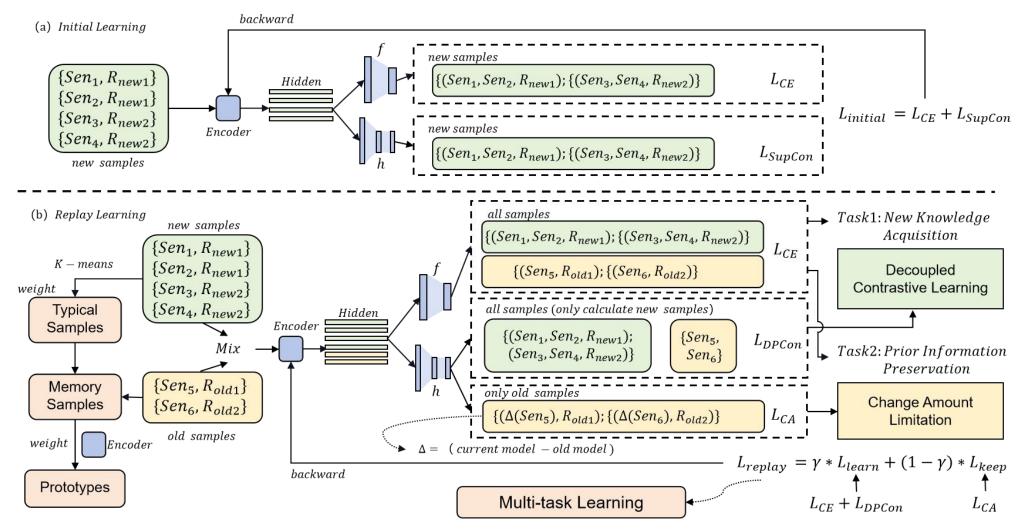
Our **DecouPled** Contributions for Continual Relation Extraction:

[Balancing CRE with Multi-task Learning]

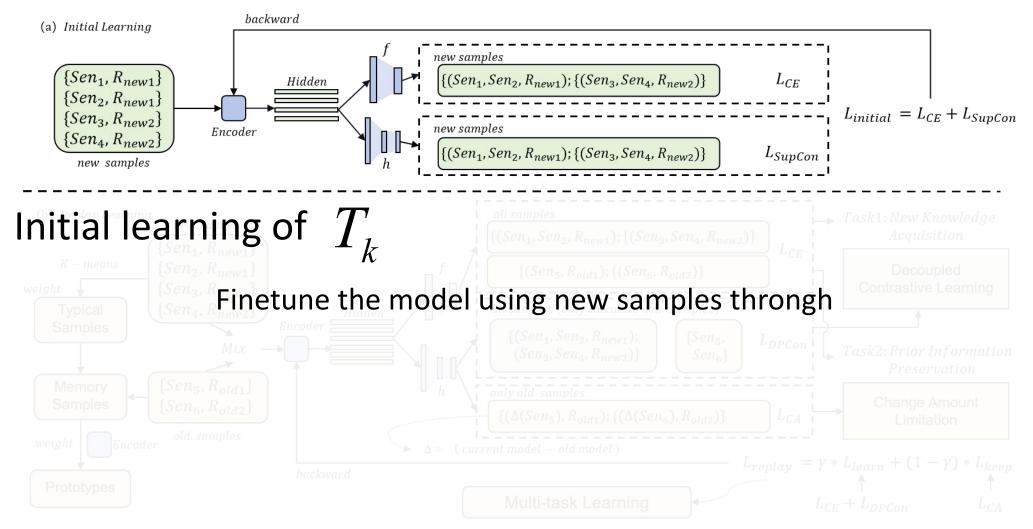
Prior Information Preservation and New Knowledge Acquisition

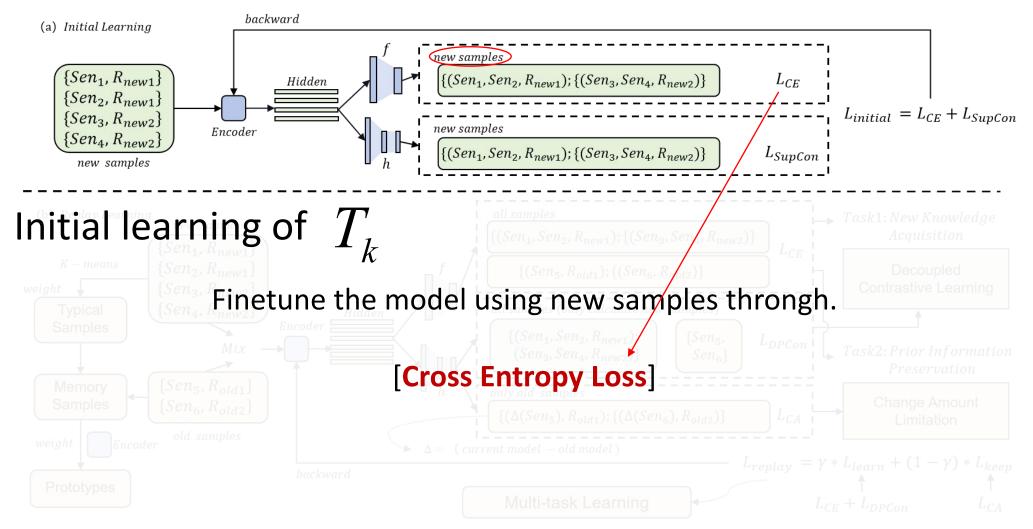
[Decoupling to Mitigate Overfitting]

Conserve the memory structural information

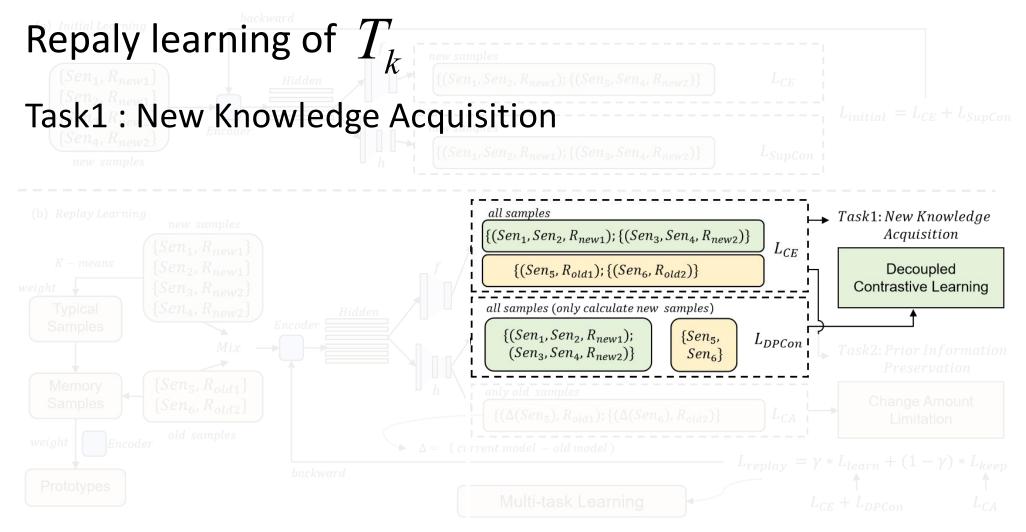

[Empirical Validation of DP-CRE]

Experiment results demonstrate the SOTA accuracy.

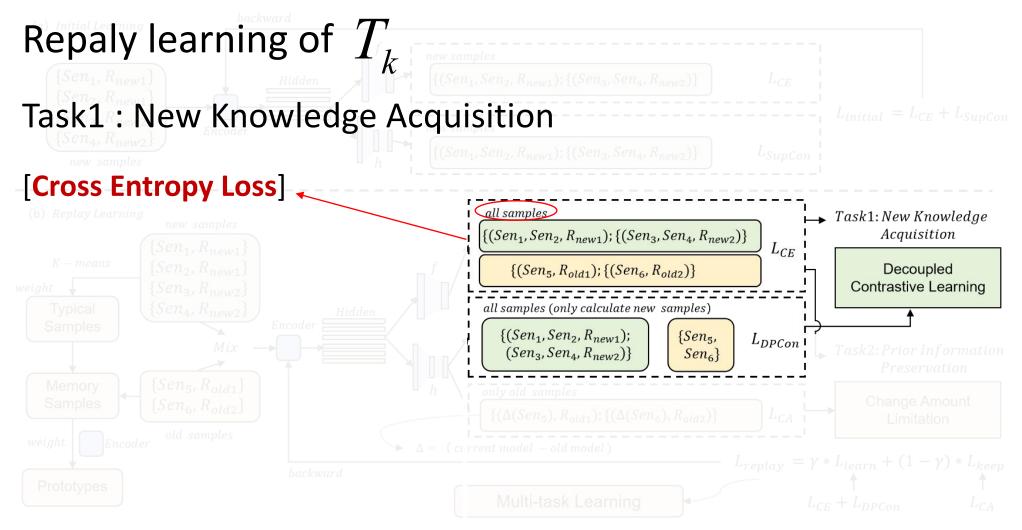

DecouPled Continual Relation Extraction

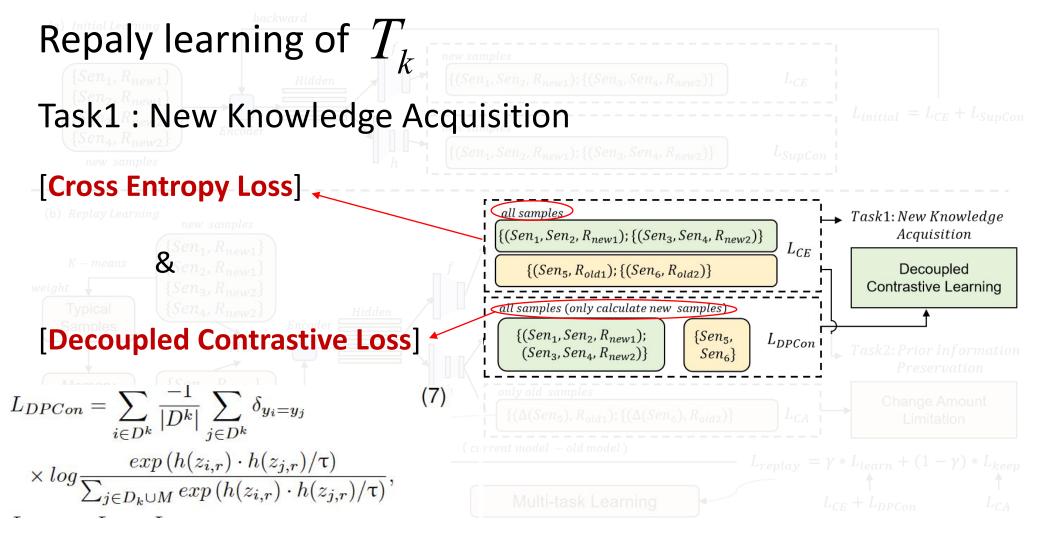

DP CRE: Initial Learning with New Samples

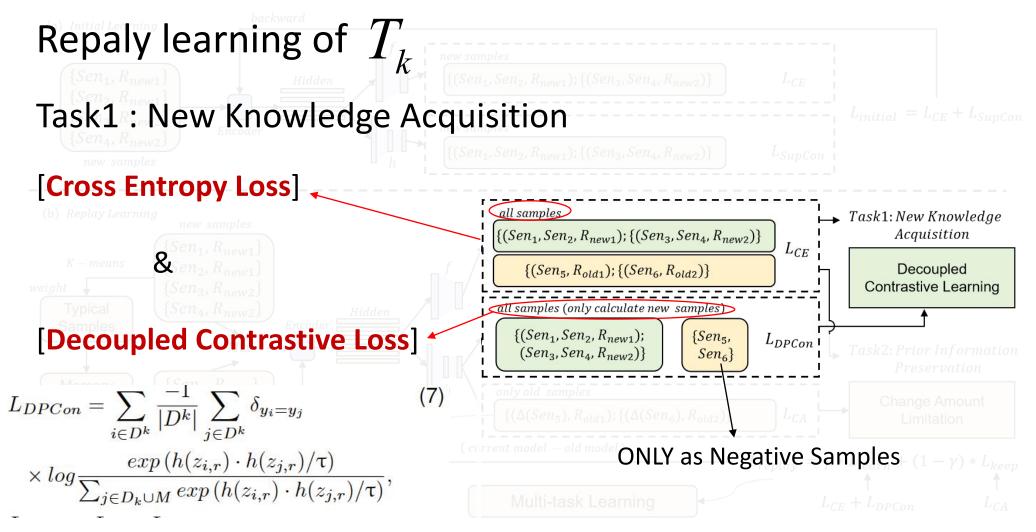
DP CRE: Initial Learning with New Samples

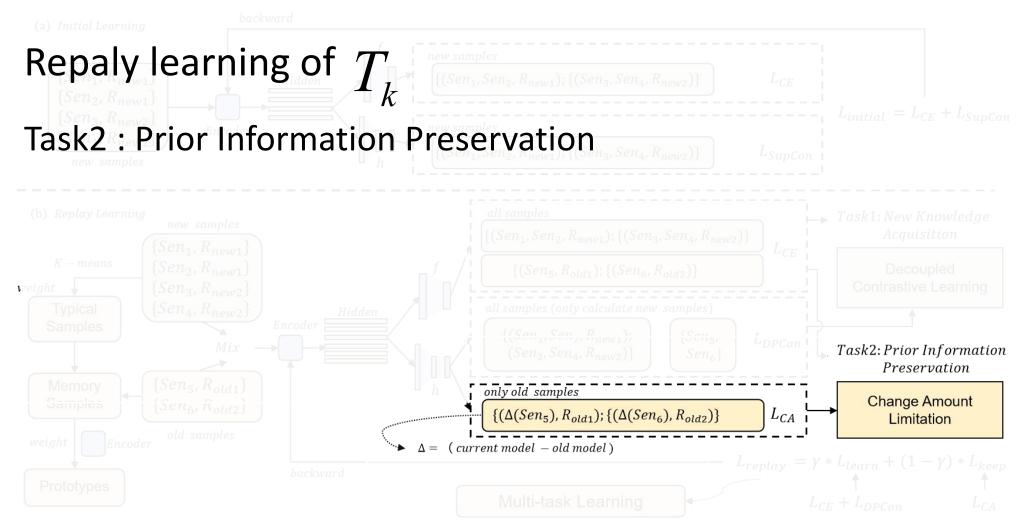


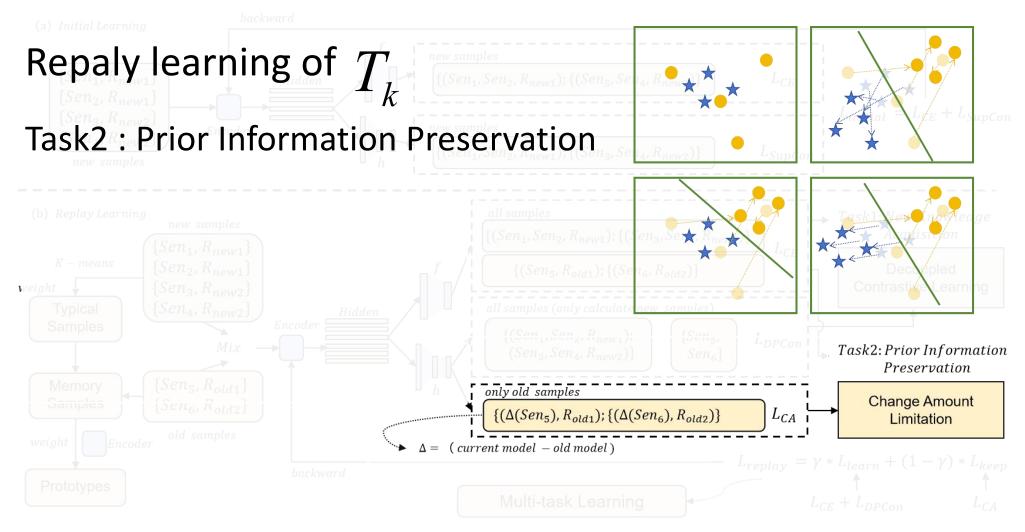
DP CRE: Initial Learning with New Samples

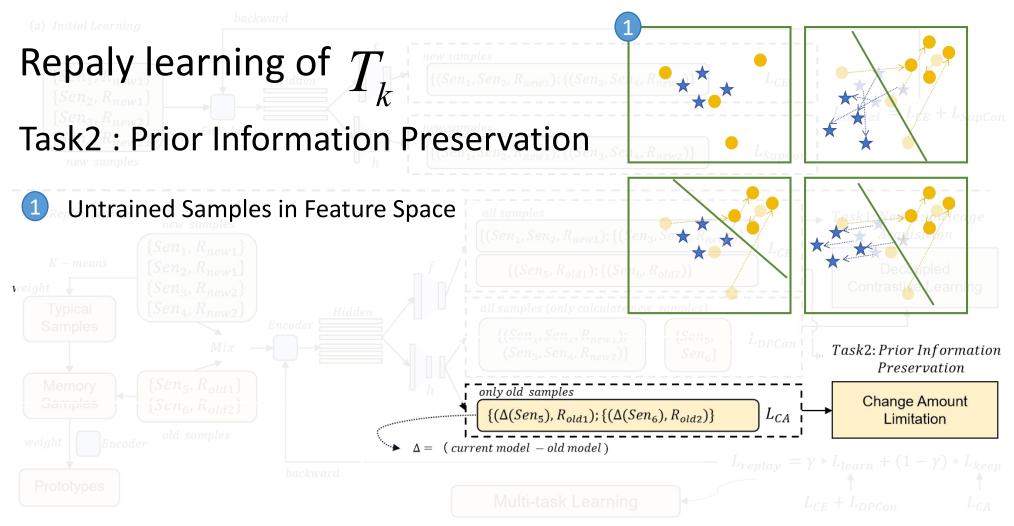


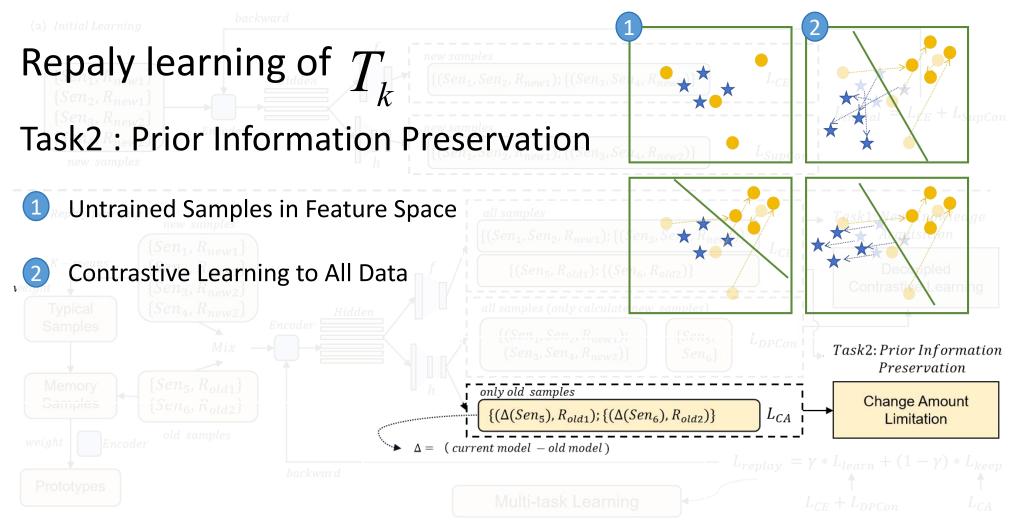


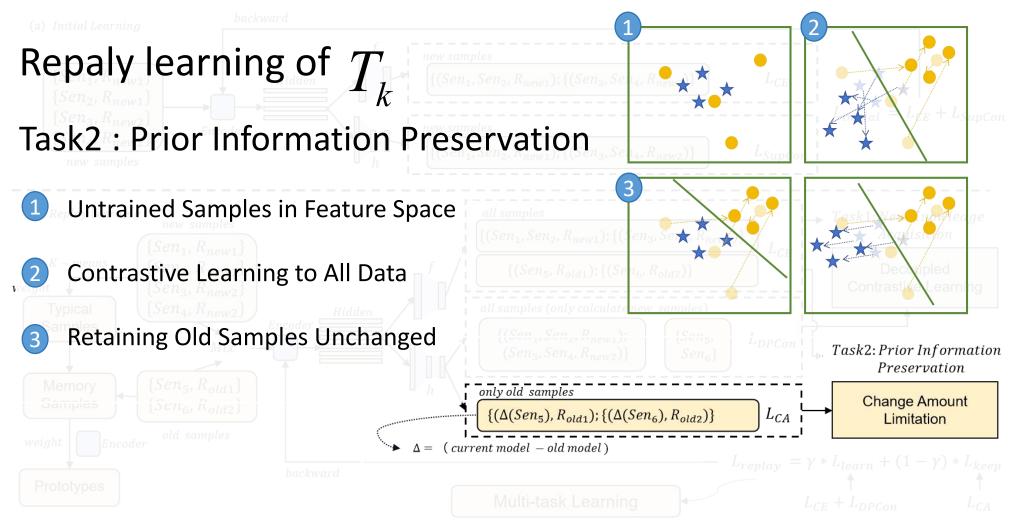


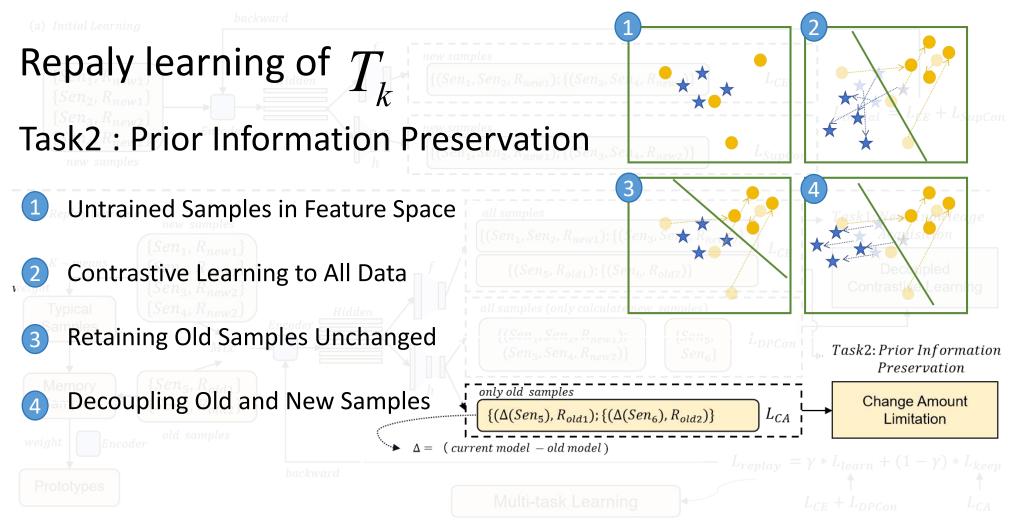


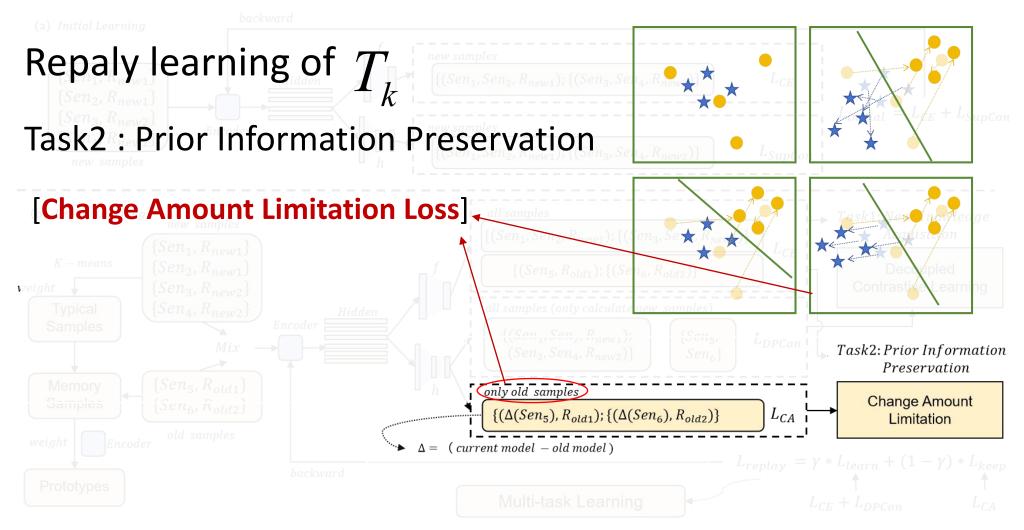


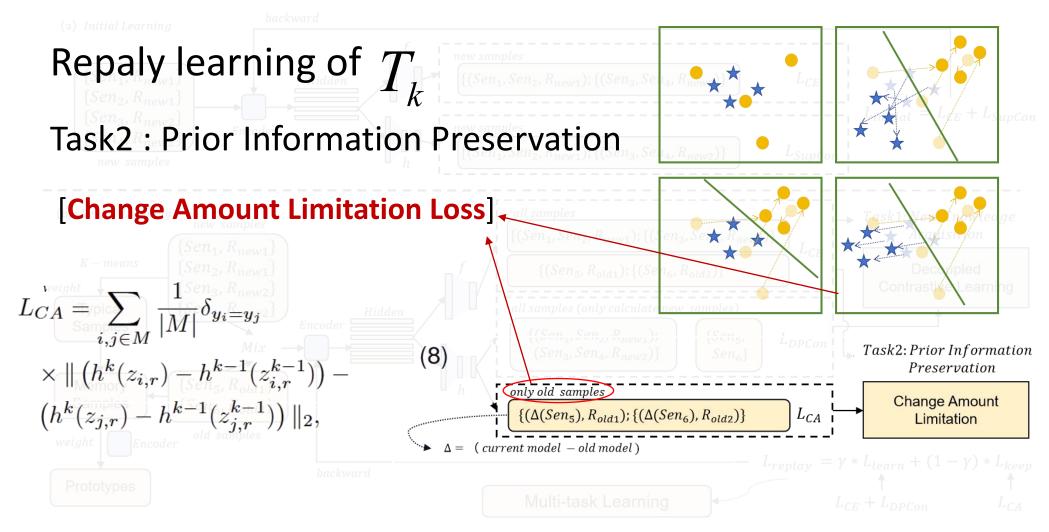


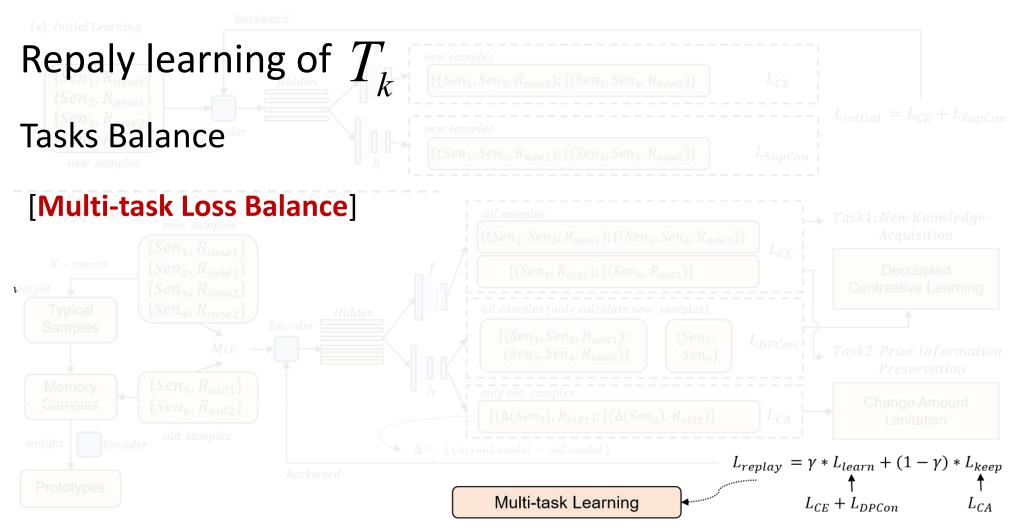


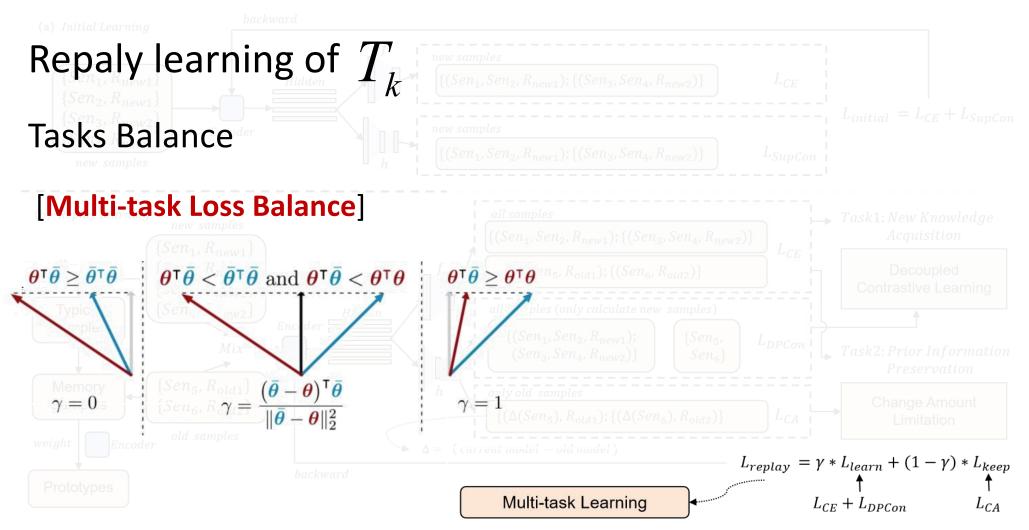




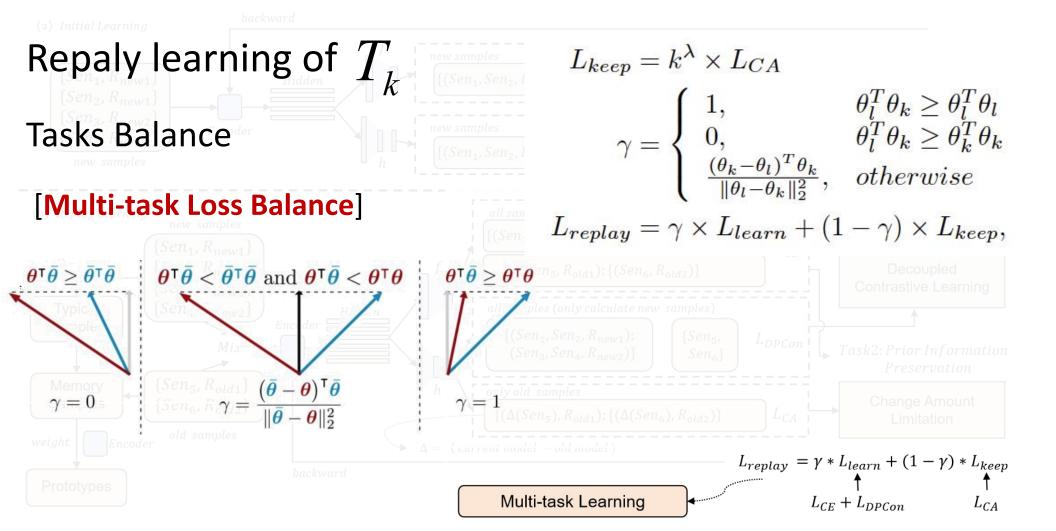







DP CRE: Multi-task Balance

DP CRE: Multi-task Balance



(9)

DP CRE: Multi-task Balance

FewRel Model T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_{10} EA-EMR (Wang et al., 2019) 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2 89.7 EMAR(BERT) (Han et al., 2020) 98.2 94.8 92.6 91.1 87.9 87.1 86.0 84.7 83.3 CML (Wu et al., 2021) 68.2 58.2 53.7 50.4 47.8 44.4 39.7 91.2 74.8 43.1 RP-CRE (Cui et al., 2021) 92.6 89.7 87.9 86.0 83.3 98.1 94.8 91.1 87.1 84.7 CR-ECL (Hu et al., 2022) 92.7 89.4 87.5 82.7 97.8 94.9 90.9 85.7 84.6 83.6 ACA (Wang et al., 2022b) 98.4 95.1 93.0 91.5 90.5 88.9 87.9 86.7 85.8 84.4 CRL (Zhao et al., 2022) 98.0 94.3 92.4 90.5 89.5 87.8 87.0 85.6 83.0 84.3 CEAR (Zhao et al., 2023) 95.6 93.5 92.0 90.8 89.3 88.0 86.8 85.6 84.0 98.3 Ours 98.5 95.4 93.7 92.1 90.9 89.4 88.5 87.4 86.3 85.1 TACRED Model T_2 T_5 T_{10} T_1 T_3 T_4 T_6 T_7 T_8 T_9 EA-EMR (Wang et al., 2019) 47.5 40.1 38.3 29.9 24.0 27.3 26.9 25.8 22.9 19.8 EMAR(BERT) (Han et al., 2020) 98.0 93.0 89.7 84.7 82.7 81.5 79.0 77.5 77.6 77.1 CML (Wu et al., 2021) 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4 88.8 82.8 75.7 RP-CRE (Cui et al., 2021) 96.6 91.4 84.8 81.0 77.9 77.4 76.5 83.3 CR-ECL (Hu et al., 2022) 97.3 92.5 88.2 85.6 83.7 81.8 80.1 77.7 76.8 ACA (Wang et al., 2022b) 98.2 93.8 89.9 85.9 84.2 82.7 80.5 78.4 78.6 77.5 CRL (Zhao et al., 2022) 90.8 79.2 79.4 78.5 98.0 93.9 86.0 84.9 82.9 80.1 CEAR (Zhao et al., 2023) 97.9 93.7 90.7 86.6 84.7 84.3 81.9 80.4 80.2 79.3 91.5 84.2 81.3 81.5 80.7 Ours 97.8 93.8 87.5 85.7 82.9

DP-CRE: Main Performance

				FewRe							
	Model	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}
	EA-EMR (Wang et al., 2019)	89.0	69.0	59.1	54.2	47.8	46.1	43.1	40.7	38.6	35.2
	EMAR(BERT) (Han et al., 2020)	98.2	94.8	92.6	91.1	89.7	87.9	87.1	86.0	84.7	83.3
	CML (Wu et al., 2021)	91.2	74.8	68.2	58.2	53.7	50.4	47.8	44.4	43.1	39.7
	RP-CRE (Cui et al., 2021)	98.1	94.8	92.6	91.1	89.7	87.9	87.1	86.0	84.7	83.3
	CR-ECL (Hu et al., 2022)	97.8	94.9	92.7	90.9	89.4	87.5	85.7	84.6	83.6	82.7
	ACA (Wang et al., 2022b)	<u>98.4</u>	95.1	93.0	91.5	90.5	88.9	87.9	86.7	<u>85.8</u>	84.4
	CRL (Zhao et al., 2022)	98.0	94.3	92.4	90.5	89.5	87.8	87.0	85.6	84.3	83.0
	CEAR (Zhao et al., 2023)	98.3	95.6	<u>93.5</u>	<u>92.0</u>	<u>90.8</u>	<u>89.3</u>	88.0	<u>86.8</u>	85.6	84.0
1)	Ours	98.5	<u>95.4</u>	93.7	92.1	90.9	89.4	88.5	87.4	86.3	85.1
				ACRE	D						
	Model	T_1	T_2	TACRE T ₃	D T ₄	T_5	T_6	T_7	T_8	T_9	T_{10}
	Model EA-EMR (Wang et al., 2019)	<i>T</i> ₁ 47.5				<i>T</i> ₅ 24.0	<i>T</i> ₆ 27.3	T ₇ 26.9	<i>T</i> ₈ 25.8	<i>T</i> ₉ 22.9	<i>T</i> ₁₀ 19.8
		_	T_2	T_3	T_4	-	-	-	-	-	
	EA-EMR (Wang et al., 2019)	47.5	<i>T</i> ₂ 40.1	T ₃ 38.3	<i>T</i> ₄ 29.9	24.0	27.3	26.9	25.8	22.9	19.8
	EA-EMR (Wang et al., 2019) EMAR(BERT) (Han et al., 2020)	47.5 98.0	T ₂ 40.1 93.0	T ₃ 38.3 89.7	<i>T</i> ₄ 29.9 84.7	24.0 82.7	27.3 81.5	26.9 79.0	25.8 77.5	22.9 77.6	19.8 77.1
	EA-EMR (Wang et al., 2019) EMAR(BERT) (Han et al., 2020) CML (Wu et al., 2021)	47.5 98.0 57.2	<i>T</i> ₂ 40.1 93.0 51.4	<i>T</i> ₃ 38.3 89.7 41.3	<i>T</i> ₄ 29.9 84.7 39.3	24.0 82.7 35.9	27.3 81.5 28.9	26.9 79.0 27.3	25.8 77.5 26.9	22.9 77.6 24.8	19.8 77.1 23.4
	EA-EMR (Wang et al., 2019) EMAR(BERT) (Han et al., 2020) CML (Wu et al., 2021) RP-CRE (Cui et al., 2021)	47.5 98.0 57.2 96.6	<i>T</i> ₂ 40.1 93.0 51.4 91.4	T ₃ 38.3 89.7 41.3 88.8	<i>T</i> ₄ 29.9 84.7 39.3 84.8	24.0 82.7 35.9 82.8	27.3 81.5 28.9 81.0	26.9 79.0 27.3 77.9	25.8 77.5 26.9 77.4	22.9 77.6 24.8 76.5	19.8 77.1 23.4 75.7
	EA-EMR (Wang et al., 2019) EMAR(BERT) (Han et al., 2020) CML (Wu et al., 2021) RP-CRE (Cui et al., 2021) CR-ECL (Hu et al., 2022)	47.5 98.0 57.2 96.6 97.3	<i>T</i> ₂ 40.1 93.0 51.4 91.4 92.5	T ₃ 38.3 89.7 41.3 88.8 88.2	T4 29.9 84.7 39.3 84.8 85.6	24.0 82.7 35.9 82.8 83.7	27.3 81.5 28.9 81.0 83.3	26.9 79.0 27.3 77.9 81.8	25.8 77.5 26.9 77.4 80.1	22.9 77.6 24.8 76.5 77.7	19.8 77.1 23.4 75.7 76.8
1	EA-EMR (Wang et al., 2019) EMAR(BERT) (Han et al., 2020) CML (Wu et al., 2021) RP-CRE (Cui et al., 2021) CR-ECL (Hu et al., 2022) ACA (Wang et al., 2022b)	47.5 98.0 57.2 96.6 97.3 98.2	$\begin{array}{c} T_2 \\ 40.1 \\ 93.0 \\ 51.4 \\ 91.4 \\ 92.5 \\ \underline{93.8} \end{array}$	$\begin{array}{c} T_3 \\ 38.3 \\ 89.7 \\ 41.3 \\ 88.8 \\ 88.2 \\ 89.9 \end{array}$	$\begin{array}{c} T_4 \\ 29.9 \\ 84.7 \\ 39.3 \\ 84.8 \\ 85.6 \\ 85.9 \end{array}$	24.0 82.7 35.9 82.8 83.7 84.2	27.3 81.5 28.9 81.0 83.3 82.7	26.9 79.0 27.3 77.9 81.8 80.5	25.8 77.5 26.9 77.4 80.1 78.4	22.9 77.6 24.8 76.5 77.7 78.6	19.8 77.1 23.4 75.7 76.8 77.5

DP-CRE: Main Performance

1

DP-CRE outperforms previous CRE work.

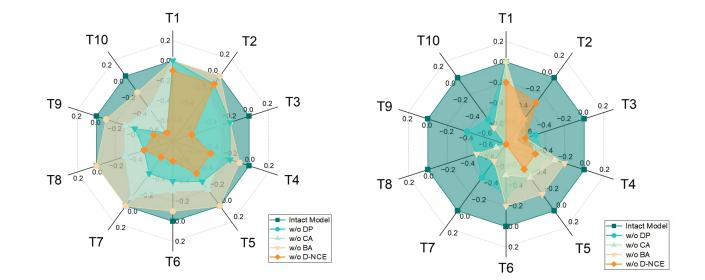
(1

FewRel											
Model	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	
EA-EMR (Wang et al., 2019)	89.0	69.0	59.1	54.2	47.8	46.1	43.1	40.7	38.6	35.2	
EMAR(BERT) (Han et al., 2020)	98.2	94.8	92.6	91.1	89.7	87.9	87.1	86.0	84.7	83.3	
CML (Wu et al., 2021)	91.2	74.8	68.2	58.2	53.7	50.4	47.8	44.4	43.1	39.7	
RP-CRE (Cui et al., 2021)	98.1	94.8	92.6	91.1	89.7	87.9	87.1	86.0	84.7	83.3	
CR-ECL (Hu et al., 2022)	97.8	94.9	92.7	90.9	89.4	87.5	85.7	84.6	83.6	82.7	
ACA (Wang et al., 2022b)	<u>98.4</u>	95.1	93.0	91.5	90.5	88.9	87.9	86.7	<u>85.8</u>	84.4	
CRL (Zhao et al., 2022)	98.0	94.3	92.4	90.5	89.5	87.	37.0	85.6	84.3	83.0	
CEAR (Zhao et al., 2023)	98.3	95.6	<u>93.5</u>	<u>92.0</u>	<u>90.8</u>	<u>89.3</u>	88.0	<u>86.8</u>	85.6	84.0	
Ours	98.5	<u>95.4</u>	93.7	92.1	90.9	89.4	88.5	87.4	86.3	85.1	
		-	FACRE	D							
Model	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	
EA-EMR (Wang et al., 2019)	47.5	40.1	38.3	29.9	24.0	27.3	26.9	25.8	22.9	19.8	
EMAR(BERT) (Han et al., 2020)	98.0	93.0	89.7	84.7	82.7	81.5	79.0	77.5	77.6	77.1	
CML (Wu et al., 2021)	57.2	51.4	41.3	39.3	35.9	28.9	27.3	26.9	24.8	23.4	
RP-CRE (Cui et al., 2021)	96.6	91.4	88.8	84.8	82.8	81.0	77.9	77.4	76.5	75.7	
CR-ECL (Hu et al., 2022)	97.3	92.5	88.2	85.6	83.7	83.3	81.8	80.1	77.7	76.8	
ACA (Wang et al., 2022b)	98.2	<u>93.8</u>	89.9	85.9	84.2	82.7	80.5	78.4	78.6	77.5	
CRL (Zhao et al., 2022)	<u>98.0</u>	93.9	90.8	86.0	84.9	82.	<u> </u>	79.2	79.4	78.5	
CEAR (Zhao et al., 2023)	97.9	93.7	90.7	86.6	84.7	84.3	81.9	80.4	80.2	79.3	
Ours	97.8	<u>93.8</u>	91.5	87.5	85.7	<u>84.2</u>	82.9	81.3	81.5	80.7	

DP-CRE: Main Performance

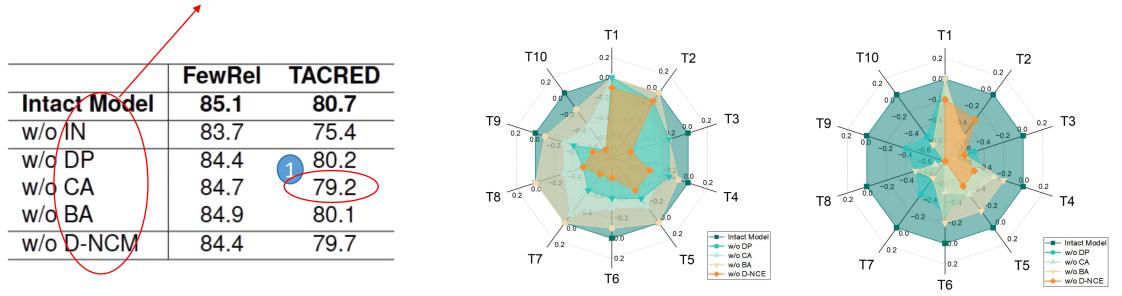
DP-CRE outperforms previous CRE work.

2 More significant enhancement in **the later CRE tasks**.

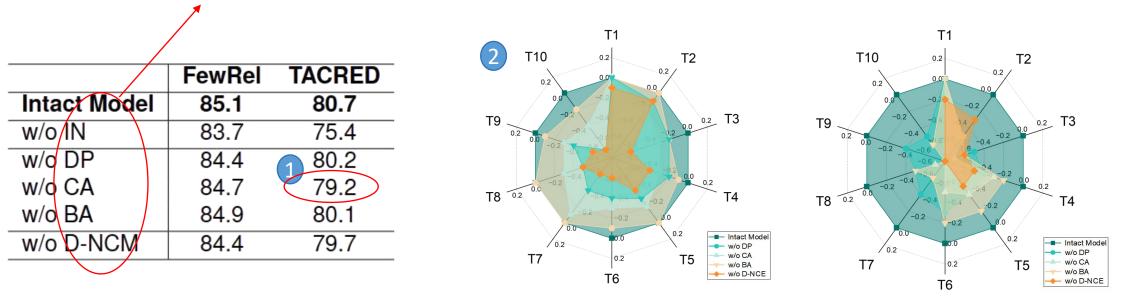

DP-CRE accumulate advantages when facing **denser** feature space and more **imbalanced** tasks number.

Initial Learning(IN), Decoupled Contrastive Learning(DP), Change Amount Limitation(CA), Multi-task Balance(BA), Double-NCM Prediction(D-NCM)

	FewRel	TACRED
Intact Model	85.1	80.7
w/o IN	83.7	75.4
w/o DP	84.4	80.2
w/o CA	84.7	79.2
w/o BA	84.9	80.1
w/o D-NCM	84.4	79.7

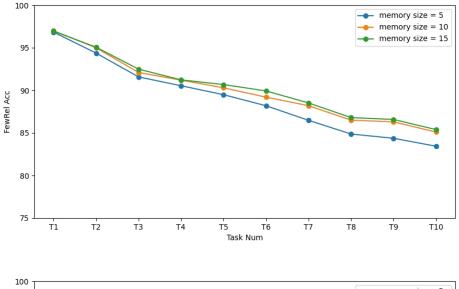

Initial Learning(IN), Decoupled Contrastive Learning(DP), Change Amount Limitation(CA), Multi-task Balance(BA), Double-NCM Prediction(D-NCM)

Initial Learning(IN), Decoupled Contrastive Learning(DP), Change Amount Limitation(CA), Multi-task Balance(BA), Double-NCM Prediction(D-NCM)

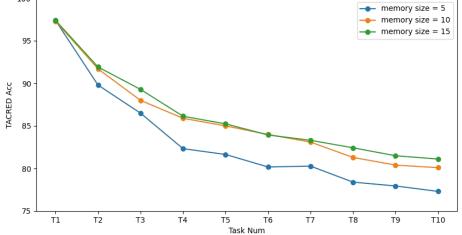


1 TACRED dataset consists of a larger number of conflicting relation types, CA-Limit more significant in handling frequent embedding changes.

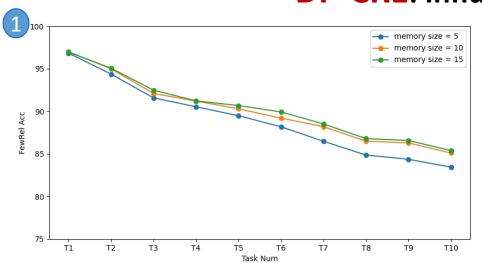
Initial Learning(IN), Decoupled Contrastive Learning(DP), Change Amount Limitation(CA), Multi-task Balance(BA), Double-NCM Prediction(D-NCM)


 TACRED dataset consists of a larger number of conflicting relation types, CA-Limit more significant in handling frequent embedding changes.

Δ accuracy (%).

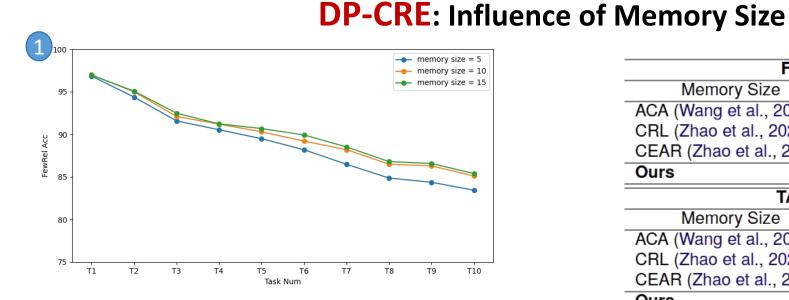


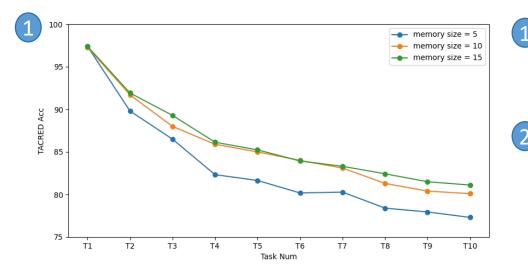
DP-CRE: Influence of Memory Size



FewRel									
Memory Size	5	10	15						
ACA (Wang et al., 2022b)	82.8	84.4	85.1						
CRL (Zhao et al., 2022)	80.3	83.0	84.0						
CEAR (Zhao et al., 2023)	82.6	84.0	84.9						
Ours	83.4	85.1	86.1						
TACRE	D								
Memory Size	5	10	15						
ACA (Wang et al., 2022b)	76.2	77.5	78.7						
CRL (Zhao et al., 2022)	75.0	78.5	79.7						
CEAR (Zhao et al., 2023)	76.7	79.3	80.4						

1	100 - 95 -	<pre>memory size = 5 memory size = 10 memory size = 15</pre>
D Acc	90 -	
TACRED Acc	85 -	
	80 -	
	75	T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Task Num


FewRel Memory Size 5 10 15 85.1 ACA (Wang et al., 2022b) 82.8 84.4 CRL (Zhao et al., 2022) 80.3 83.0 84.0 CEAR (Zhao et al., 2023) 82.6 84.0 84.9 83.4 85.1 86.1 Ours TACRED 10 15 Memory Size 5 76.2 77.5 78.7 ACA (Wang et al., 2022b) 78.5 CRL (Zhao et al., 2022) 75.0 79.7 CEAR (Zhao et al., 2023) 76.7 79.3 80.4 77.3 80.7 81.3 Ours


Additional memory samples providing more information.

DP-CRE: Influence of Memory Size

FewRel Memory Size 10 15 5 ACA (Wang et al., 2022b) 82.8 84.4 85.1 80.3 84.0 CRL (Zhao et al., 2022) 83.0 CEAR (Zhao et al., 2023) 82.6 84.0 84.9 83.4 85.1 86.1 Ours TACRED Memory Size 5 10 15 ACA (Wang et al., 2022b) 76.2 78.7 77.5 CRL (Zhao et al., 2022) 75.0 78.5 79.7 CEAR (Zhao et al., 2023) 76.7 79.3 80.4 77.3 80.7 81.3 Ours

Additional memory samples providing more information.

Change amount for **each memory sample individually** make more memory samples information used.

FewRel											
Model	Task	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	
ACA	old	1.50	2.50	2.86	3.29	3.85	4.35	5.09	5.09	5.48	
	new	1.33	2.03	3.06	3.13	4.69	4.06	5.31	6.34	5.53	
CEAR	old	1.41	2.08	2.64	3.11	3.49	4.23	4.70	5.48	6.16	
	new	1.08	1.80	2.16	2.81	3.66	3.41	4.94	5.59	5.13	
Ours	old	1.22	1.67	2.29	2.91	3.27	3.73	3.52	4.48	4.70	
	new	0.96	1.63	2.26	2.91	3.42	3.09	4.78	5.34	4.59	
				T/	ACRED						
Model	Task	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	
ACA	old	1.83	2.92	3.15	3.39	3.96	4.43	4.89	5. 1 3	5.47	
	new	1.30	2.33	3.05	3.10	4.75	4.18	5.28	5. <mark>8</mark> 5	5.85	
CEAR	old	1.33	2.15	2.71	3.21	3.58	4.30	4.58	5.43	5.98	
	new	0.90	2.00	2.18	2.78	3.73	3.25	5.13	5.05	5.45	
Ours	old	1.08	1.99	2.54	3.04	3.42	3.82	4.35	4.61	4.78	
Ours	ulu	1.00	1.00	2.01	0.0.1						

DP-CRE: Task Balance Experiment

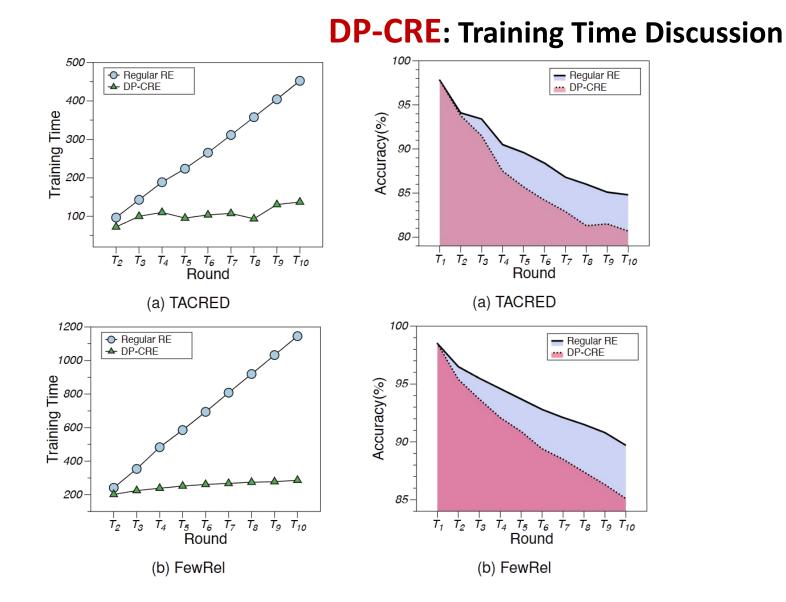
FewRel										
Model	Task	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}
ACA		1.50	2.50	2.86	3.29	3.85	4.35	5.09	5.09	5.48
	new	1.33	2.03	3.06	3.13	4.69	4.06	5.31	6.34	5.53
CEAR	old	1.41	2.08	2.64	3.11	3.49	4.23	4.70	5.48	6.16
	new	1.08	1.80	2.16	2.81	3.66	3.41	4.94	5.59	5.13
Ours	old	1.22	1.67	2.29	2.91	3.27	3.73	3.52	4.48	4.70
	new	0.96	1.63	2.26	2.91	3.42	3.09	4.78	5.34	4.59
				T/	ACRED					
Model	Task	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}
ACA	old	1.83	2.92	3.15	3.39	3.96	4.43	4.89	5. 1 3	5.47
	new	1.30	2.33	3.05	3.10	4.75	4.18	5.28	5. <mark>8</mark> 5	5.85
CEAR	old	1.33	2.15	2.71	3.21	3.58	4.30	4.58	5.43	5.98
	new	0.90	2.00	2.18	2.78	3.73	3.25	5.13	5.05	5.45
Ours	old	1.08	1.99	2.54	3.04	3.42	3.82	4.35	4.61	4.78
	new	1.07	1.80	2.08	2.95	3.73	3.13	4.90	5.00	5.10

DP-CRE: Task Balance Experiment

1 New and old tasks calculated separately.

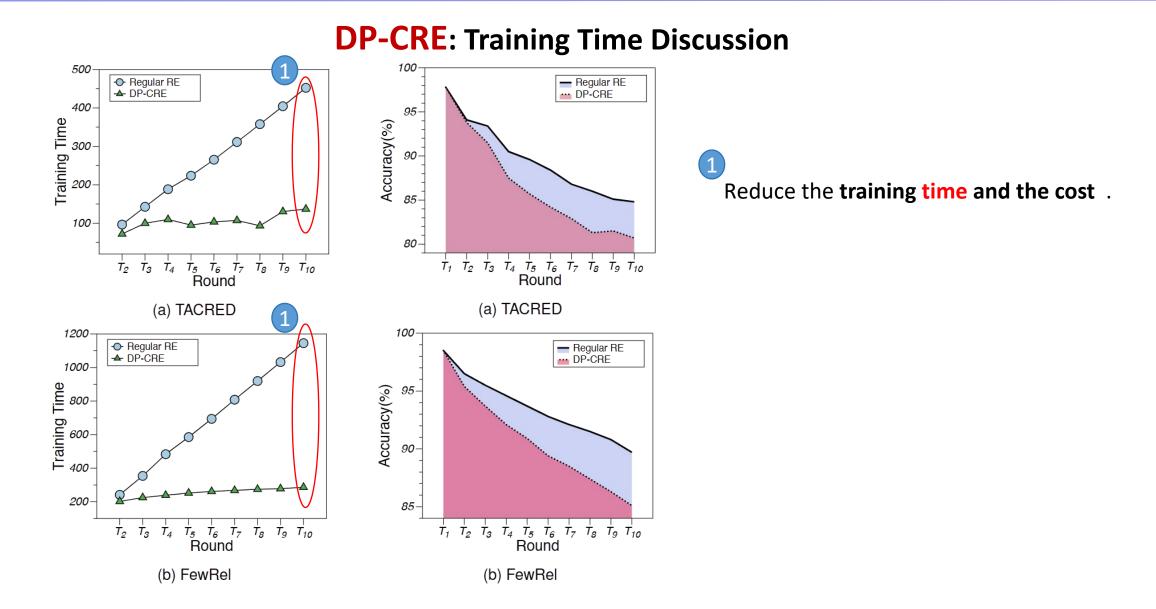
	FewRel										
Model	Task	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	
ACA	old	1.50	2.50	2.86	3.29	3.85	4.35	5.09	5.09	5.48	
	new	1.33	2.03	3.06	3.13	4.69	4.06	5.31	6.34	5.53	
CEAR	old	1.41	2.08	2.64	3.11	3.49	4.23	4.70	5.48	6.16	
	new	1.08	1.80	2.16	2.81	3.66	3.41	4.94	5.59	5.13	
Ours	old	1.22	1.67	2.29	2.91	3.27	3.73	3.52	4.48	4.70	
	new	0.96	1.63	2.26	2.91	3.42	3.09	4.78	5.34	4.59	
			2	TA	CRED						
Model	Task	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	
ACA	old	1.83	2.92	3.15	3.39	3.96	4.43	4.89	5.13	5.47	
	new	1.30	2.33	3.05	3.10	4.75	4.18	5.28	5.85	5.85	
CEAR	old	1.33	2.15	2.71	3.21	3.58	4.30	4.58	5.43	5.98	
	new	0.90	2.00	2.18	2.78	3.73	3.25	5.13	5.05	5.45	
Ours	old	1.08	1.99	2.54	3.04	3.42	3.82	4.35	4.61	4.78	
	new	1.07	1.80	2.08	2.95	3.73	3.13	4.90	5.00	5.10	

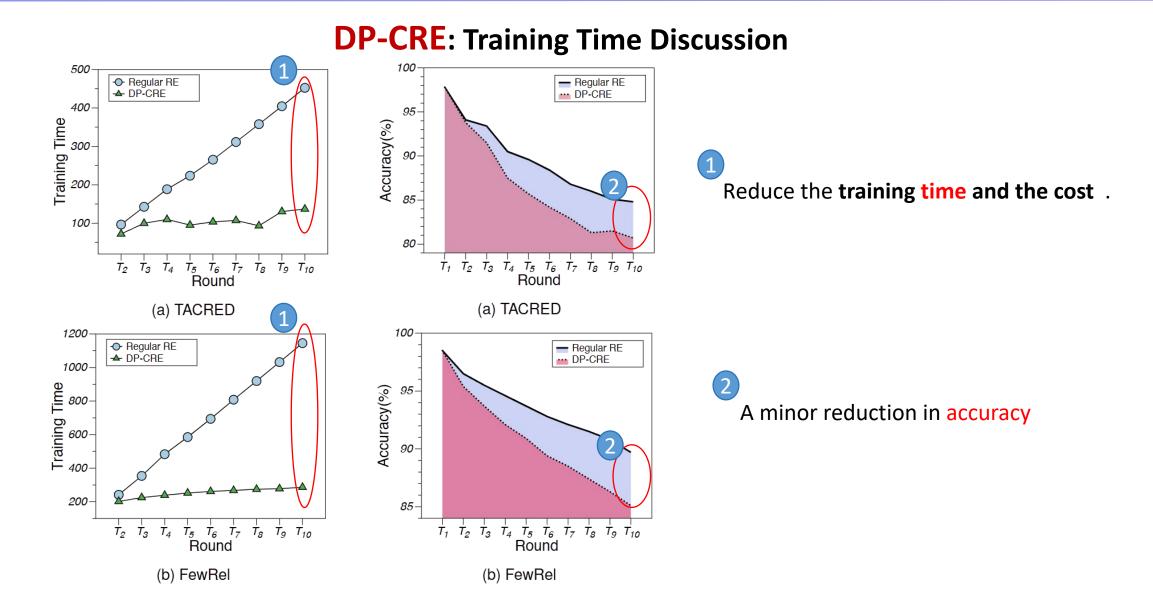
DP-CRE: Task Balance Experiment


New and old tasks calculated **separately**.

 $2 \quad \Delta F1$ of the CRE model and the regular RE model.

Prevents any **over-bias towards either side** in case of conflicts, thereby ensuring a balanced model.





DP-CRE

Balance prior information preservation **and new** knowledge acquisition.

Monitor the **changes** in embedding and maintain the **structural information of** memory samples.

Enhance the performance of **SOTA** CRE models.