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Abstract

Protolanguage reconstruction is central to historical linguistics. The comparative method, one of 
the most influential theoretical and methodological frameworks in the history of the language 
sciences, allows linguists to infer protoforms (reconstructed ancestral words) from their reflexes 
(related modern words) based on the assumption of regular sound change. Not surprisingly, 
numerous computational linguists have attempted to operationalize comparative reconstruction 
through various computational models, the most successful of which have been supervised 
encoder-decoder models, which treat the problem of predicting protoforms given sets of reflexes 
as a sequence-to-sequence problem. We argue that this framework ignores one of the most 
important aspects of the comparative method: not only should protoforms be inferable from 
cognate sets (sets of related reflexes) but the reflexes should also be inferable from the 
protoforms. Leveraging another line of research—reflex prediction—we propose a system in which 
candidate protoforms from a reconstruction model are reranked by a reflex prediction model. We 
show that this more complete implementation of the comparative method allows us to surpass 
state-of-the-art protoform reconstruction methods on three of four Chinese and Romance 
datasets.



Background
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AlpacaLlama

Images: Wikipedia
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capra 'goat' 
/kapra/ 
(Italian)

cabra 'goat' 
/kabra/ 

(Spanish)

Example words: (Campbell 2021)
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capra 'goat' 
/kapra/ 
(Italian)

cabra 'goat' 
/kabra/ 

(Spanish)

capo 'end, chief' 
/kapo/ 
(Italian)

cabo 'end, tip' 
/kabo/ 

(Spanish)

⋮⋮

Example words: (Campbell 2021)
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A window into human past

Evolutionary Biology 

Population Genetics 

Historical Linguistics
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Some Definitions

Protolanguage: a historical language 
Daughter languages: descendants of a protolanguage 
Protoform: a reconstructed1 ancestral word 
Reflexes: descendent words in daughter languages  
Cognate set: a set of reflexes with the same ancestor
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Some Definitions

Example: (Campbell 2021)

capra 'goat' 
(Latin)

capra 
/kapra/ 
(Italian)

cabra 
/kabra/ 

(Spanish)

cabra 
/kabra/ 

(Portuguese)

chèvre 
/∫ɛvr(ə)/ 
(French)
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Some Definitions

Example: (Campbell 2021)

capra 'goat' 
(Latin)

capra 
/kapra/ 
(Italian)

cabra 
/kabra/ 

(Spanish)

cabra 
/kabra/ 

(Portuguese)

chèvre 
/∫ɛvr(ə)/ 
(French)

Protoform
Protolanguage

Reflexes in the 
same cognate set

Daughter languages
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The Comparative Method

The comparative method (Anttila, 1989; Campbell, 2021) uses reflexes in cognate sets to 
reconstruct the protoforms in a way that: 

⯈ Maximizes the regularity of sound changes from reconstructions to reflexes 
⯈ Minimizes the phonetic edits between the reconstructions and their reflexes

"Every sound change, in so far as it proceeds mechanically, is completed in accordance with laws 
admitting of no exceptions; i.e. the direction in which the change takes place is always the same 
for all members of a language community, apart from the case of dialect division, and all words in 

which the sound subject to change occurs in the same conditions are affected by the change 
without exception." 

—H. Osthoff and K. Brugmann, Morphologische Untersuchungen auf dem Gebiete der 
indogermanischen Sprachen i, Leipzig, 1878 (quoted in Szemerény, 1996, p. xiii)
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Computational Protoform Reconstruction

⯈ Proposed as a computational task (Durham and Rogers, 1969) 
⯈ Sound change probabilistic models with a Monte Carlo inference algorithm that 

operates on phylogenetic trees (Bouchard-Côté et al., 2013) 
⯈ Sequence comparison and phonetic alignment (List et al., 2022a)  
⯈ Conditional random field to label each position in the reflex with a protoform token 

(Ciobanu and Dinu, 2018; Ciobanu et al., 2020) 
⯈ Sequence-to-sequence formulation: concatenate the whole cognate into one 

sequence, with separators and daughter language tags (Meloni et al., 2021)

Input:	 *[Cantonese]:mei̯˨*[Mandarin]:mei̯˥˩*[Wu]:me̞˨˧*     
Output:	 mij³

(the 煝 cognate set from WikiHan)
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Neural Protoform Reconstruction

⯈ RNN with language embedding (Meloni et al., 2021) 
⯈ Transformer (Kim et al., 2023) 
⯈ VAE (Variational Autoencoder) (Cui et al., 2022)

Input:	     *[Cantonese]:mei̯˨*[Mandarin]:mei̯˥˩*[Wu]:me̞˨˧*     
Output:	     mij³



12 LREC-COLING 2024 Improved Neural Protoform Reconstruction via Reflex Prediction

Neural Protoform Reconstruction

⯈ RNN with language embedding (Meloni et al., 2021) 
⯈ Transformer (Kim et al., 2023) 
⯈ VAE (Variational Autoencoder) (Cui et al., 2022)

Sequence-to-sequence

Input:	     *[Cantonese]:mei̯˨*[Mandarin]:mei̯˥˩*[Wu]:me̞˨˧*     
Output:	     mij³



12 LREC-COLING 2024 Improved Neural Protoform Reconstruction via Reflex Prediction

Neural Protoform Reconstruction

⯈ RNN with language embedding (Meloni et al., 2021) 
⯈ Transformer (Kim et al., 2023) 
⯈ VAE (Variational Autoencoder) (Cui et al., 2022)

Sequence-to-sequence

Input:	     *[Cantonese]:mei̯˨*[Mandarin]:mei̯˥˩*[Wu]:me̞˨˧*     
Output:	     mij³

⯈ Cognate Transformer (Akavarapu and Bhattacharya, 2023)

Input:	 [Cantonese]	 m	 e	 i̯	 ˨ 
	 [Mandarin]	 m	 e	 i̯	 ˥˩ 
	 [Wu]	 	 m	 e̞	 -	 ˨˧ 
	 [Middle Chinese]	 [MASK]	 [MASK] 	 [MASK] 	 [MASK] 
Output:	 [Middle Chinese]	 m	 i	 j	 ³

Multi-sequence encoder 
with classifier head



Motivation
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Historical 
LinguistsReflexes Reconstruction? Historical 
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Model Reflexes

Reflex prediction



19 LREC-COLING 2024 Improved Neural Protoform Reconstruction via Reflex Prediction

Computational Reflex Prediction

⯈ Rule-based (Marr and Mortensen 2020, 2023) 
⯈ Semi-automatic: automatic alignment and identification of sound correspondences 

on manually annotated cognate sets (Bodt and List, 2022) 
⯈ LSTM encoder-decoder augmented with part of speech and word embeddings 

(Cathcart and Rama, 2020) 
⯈ Replication of Cathcart and Rama (2020) with GRU and Transformer (Arora et al., 

2023)
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⯈ Semi-automatic: automatic alignment and identification of sound correspondences 

on manually annotated cognate sets (Bodt and List, 2022) 
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Input:	 *[Cantonese]:mei̯˨*[Mandarin]:mei̯˥˩*[Wu]:me̞˨˧*     
Output:	 mij³
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Representing Reflex Prediction

Reconstruction

[Cantonese] [Mandarin] [Wu]mei̯˨ mei̯˥ me̞˨

Reflex Prediction

Input:	 mij³ 
Output:	 |

Input:	 mij³ 
Output:	 |

Input:	 mij³ 
Output:	 |
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Representing Reflex Prediction

Input:	 [Cantonese] mij³ 
Output:	 mei̯˨

Input:	 [Mandarin] mij³ 
Output:	 mei̯˥

Input:	 [Wu] mij³ 
Output:	 me̞˨

Reconstruction Reflex Prediction

Input:	 *[Cantonese]:mei̯˨*[Mandarin]:mei̯˥˩*[Wu]:me̞˨˧*     
Output:	 mij³
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Modelling the Comparative Method

Workflow Technique

Predict the protoform Sequence-to-sequence 
transduction

?
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Modelling the Comparative Method

Workflow Technique

1. Propose multiple protoform 
candidates

2. Verify the phonetic plausibility 
of the candidates

3. Adjust the likelihood of each 
candidate and make a prediction
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Modelling the Comparative Method

Workflow Technique
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A Reranked Reconstruction System
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A Reranked Reconstruction System

Bold: correct protoform or reflexe 
mi: model score (sequence log probability) 
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A Reranked Reconstruction System

beam search 
reconstruction

(beam size k = 5)

Bold: correct protoform or reflexe 
mi: model score (sequence log probability) 
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A Reranked Reconstruction System

Bold: correct protoform or reflexe 
mi: model score (sequence log probability) 
ri: reranker score (reflex prediction accuracy)
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A Reranked Reconstruction System

Bold: correct protoform or reflexe 
mi: model score (sequence log probability) 
ri: reranker score (reflex prediction accuracy) 
si: adjusted score (scaled sum of model score and reranker score)
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A Reranked Reconstruction System
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Methods
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The Reranked 
Reconstruction 
Algorithm

LREC-COLING 2024
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Datasets

Romance Datasets 

⯈ Rom-phon (Meloni et al., 2021; Ciobanu and Dinu, 2018) — IPA representation 
⯈ Rom-orth (Meloni et al., 2021; Ciobanu and Dinu, 2018) — Orthographic representation 

Sinitic Datasets 

⯈ WikiHan (Chang et al., 2022) 
⯈ WikiHan-aug (Cui et al., 2022) — WikiHan augmented with cognate prediction (Kirov et al., 2022) 
⯈ Hóu (Hóu, 2004)



Reconstruction models (sequence-to-sequence baselines) 

⯈ Meloni et al. (2021)'s GRU (GRU) 
⯈ Kim et al. (2023)'s Transformer (Trans) 

Reconstruction model with beam search 

⯈ GRU-BS with support for beam search decoding on the same architecture as Meloni et al. (2021)'s 
GRU (consisting of language and token embeddings, a single-layer unidirectional encoder-decoder 
GRU model, and a multi-layer perceptron classifier)  

Reflex Prediction models 

⯈ Arora et al. (2023)'s Transformer reflex prediction model 
⯈ Kim et al. (2023)'s Transformer reconstruction model adapted for reflex prediction 
⯈ Arora et al. (2023)'s GRU reflex prediction model 
⯈ Baseline GRU based on Meloni et al. (2021)'s reconstruction GRU, with multi-layer bidirectional 

encoding, target language embedding during decode, one-hot vector target language prompting, 
and target-language-specific connections in the decoder's classifier network
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Models



32 LREC-COLING 2024 Improved Neural Protoform Reconstruction via Reflex Prediction

Evaluation Metrics

⯈ Accuracy (ACC): The percentage of exactly correct reconstructions 
⯈ Token edit distance (TED): The number of token insertions, deletions, or substitutions between 

predictions and targets (Levenshtein et al., 1966)  
⯈ Token error rate (TER): A length-normalized token edit distance (Cui et al., 2022)  
⯈ Feature error rate (FER): A length-normalized measure of phonological edit distance by 

PanPhon (Mortensen et al., 2016) 
⯈ B-Cubed F Score (BCFS): A measure of structural similarity between predictions and targets 

(Amigó et al., 2009; List, 2019) 
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Statistics

⯈ Wilcoxon Rank-Sum test (Wilcoxon, 1992) with α = 0.01  
⯈ Bootstrap test (Efron and Tibshirani, 1994) with 99% confidence interval (CI) for 

difference in mean



Results and Analysis
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Bold: the best-performing 
model for each metric

Average reflex prediction performance across 20 runs.
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Reflex  
Prediction

LREC-COLING 2024

Average reflex prediction performance across 20 runs.

Bold: the best-performing 
model for each metric 

We proceed by choosing 
the best model for each 
architecture as a reranker 
model (highlighted).
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Average reconstruction performance across 20 runs.

Bold: the best-performing 
model for each metric 
Asterisk: statistically 
better performance than 
both baseline models 
(Meloni et al. (2021)'s GRU 
and Kim et al. (2023)'s 
Transformer) 
Dagger: reranking system 
performs statistically 
better than its beam 
search counterpart 
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Average reconstruction performance across 20 runs.

Bold: the best-performing 
model for each metric 
Asterisk: significantly 
better performance than 
both baseline models 
(Meloni et al. (2021)'s GRU 
and Kim et al. (2023)'s 
Transformer) 
Dagger: reranking system 
performs significantly 
better than its beam 
search counterpart  

Our reranking system 
performs the best on all 
datasets (highlighted).
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Average reconstruction performance across 20 runs.

Bold: the best-performing 
model for each metric 
Asterisk: significantly 
better performance than 
both baseline models 
(Meloni et al. (2021)'s GRU 
and Kim et al. (2023)'s 
Transformer) 
Dagger: reranking system 
performs significantly 
better than its beam 
search counterpart  

Our reranking system 
performs the best on all 
datasets (highlighted).
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Reranked 
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Average reconstruction performance across 20 runs.

Bold: the best-performing 
model for each metric 
Asterisk: significantly 
better performance than 
both baseline models 
(Meloni et al. (2021)'s GRU 
and Kim et al. (2023)'s 
Transformer) 
Dagger: reranking system 
performs significantly 
better than its beam 
search counterpart  

GRU-BS with reranking 
performs significantly 
better on 4 out of the 5 
datasets (highlighted).
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Average reconstruction performance across 20 runs.

Bold: the best-performing 
model for each metric 
Asterisk: significantly 
better performance than 
both baseline models 
(Meloni et al. (2021)'s GRU 
and Kim et al. (2023)'s 
Transformer) 
Dagger: reranking system 
performs significantly 
better than its beam 
search counterpart  

Ablation: 
GRU-BS with reranking 
performs significantly 
better than GRU-BS 
without reranking on all 5 
datasets (highlighted).
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Reranker Behavior Categories

Unchanged: reranker does not change 
ranking of the target protoform

Improved: reranker assigns better 
ranking to the target protoform

Worsened: reranker assigns worse 
ranking to the target protoform

Not-in: the target protoform is not part 
of the beam search result

correct protoform incorrect protoform
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Distribution of Reranker Behavior

The distribution of reranker behavior categorization on the test set (left), and the corresponding rate of ranking 
improvement among instances with changed (i.e. improved or worsened) ranking (right). 
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Distribution of Reranker Behavior

The distribution of reranker behavior categorization on the test set (left), and the corresponding rate of ranking 
improvement among instances with changed (i.e. improved or worsened) ranking (right). 
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Distribution of Reranker Behavior

The distribution of reranker behavior categorization on the test set (left), and the corresponding rate of ranking 
improvement among instances with changed (i.e. improved or worsened) ranking (right). 
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Errors and Phonetic Distances

Comparison between the phonetic similarity between the reflexes R and the predicted protoform p ̂ 
versus the target protoform p for each category of the reranker's behavior among reconstruction 

errors

DT: normalized token 
edit distance

DF: normalized feature 
edit distance

R: reflexes        p̂: predicted protoform        p: target protoform



43 LREC-COLING 2024 Improved Neural Protoform Reconstruction via Reflex Prediction

Errors and Phonetic Distances

Comparison between the phonetic similarity between the reflexes R and the predicted protoform p ̂ 
versus the target protoform p for each category of the reranker's behavior among reconstruction 

errors

DT: normalized token 
edit distance

DF: normalized feature 
edit distance

R: reflexes        p̂: predicted protoform        p: target protoform



44 LREC-COLING 2024 Improved Neural Protoform Reconstruction via Reflex Prediction

Error Instances
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Error Instances

睦 mjukʷ 'friendly' 
Proto: target protoform 
Proto: predicted protoform

›



昶 ʈʰjaŋ 'long daytime' 
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Error Instances

磧 ts͡ʰjek 'gravel' 
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Error Instances

asthma 'asthma' feritatem 'ferocity'
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Distribution of Reranker Behavior



Conclusion
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Conclusion

Our reranked reconstruction system provides an elegant to replicate the synergy 
between reconstruction and reflex prediction in the comparative method. Our results 
serve as a vindication of the idea that designing reconstruction systems with the 
comparative method in mind can be more powerful than relying solely on sequence-to-
sequence techniques  

⯈ Keep linguists' methods in mind in computational linguistics! 

⯈ Synergizing related tasks (reflex prediction, reconstruction, cognate prediction) in 
historical linguistics can lead to better results  

⯈ Using reflex prediction in neural reconstruction is possibly a new framework for future 
reconstruction research



Links
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Links

Paper: 

Code:

https://arxiv.org/abs/2403.18769 (or conference site) 

https://github.com/cmu-llab/reranked-reconstruction

https://arxiv.org/abs/2403.18769
https://github.com/cmu-llab/reranked-reconstruction
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