KC-GenRe: A Knowledge-constrained Generative Re-ranking Method Based on Large Language Models for Knowledge Graph Completion

Yilin Wang

KC-GenRe

1

knowledge graph (KG)

D stores facts in the form of triples

- > Triple (e_h, r, e_t) : (head entity, relation, tail entity)
- $\square Knowledge graph G = (\mathcal{E}, \mathcal{R}, \mathcal{F})$
 - \succ entity set \mathcal{E}
 - \succ relation set \mathcal{R}
 - \succ triple set \mathcal{F}

knowledge graph completion (KGC)

□ knowledge graphs are incomplete

Freebase: approximately 71% of the persons lack information on their birthplace; 75% of the persons lack information on their nationality.

□ knowledge graph completion (KGC)

> predict missing facts in the KG

motivation

Generative PLM for KGC:

- > focus on ranking stage to generate texts of the missing entity
- > may require **manual assistance** to **match** the output texts with entities in KG

motivation

Generative PLM for KGC re-ranking:

- mismatch: the generated text contains the candidate entity in KG, but in different textual.
- misordering: the correct answer is not predicted in the first position.
- omission: the output text fails to include all candidates, particularly the target one.

1. The proposed method

■ KC-GenRe: a knowledge-constrained generative reranking method

1. The proposed method

Contributions:

- We propose KC-GenRe, a novel knowledge-constrained generative re-ranking model, which is the first to utilize generative LLM for KGC re-ranking as far as we know.
- We design knowledge-guided interactive training and knowledgeaugmented constrained inference methods to stimulate the potential of generative LLMs and generate valid ranking of candidates for KGC.
- Experiments on four datasets show that KG-GenRe outperforms start-of-arts results, and extensive analysis demonstrates the effectiveness of the proposed components. Datasets and codes have been open sourced.

■ (1) Generative Re-ranking Formulation

■ (2) Knowledge-guided Interactive Training

■ (3) Knowledge-augmented Constrained Inference

■ (1) Generative Re-ranking Formulation

Query: $(e_h, r, ?)$

- First stage (ranking): KGE methods
 - top-K predicted candidate entities $E_c = \{e_{t_1}, e_{t_2}, \dots, e_{t_K}\}$
 - corresponding scores

$$E_c - \{e_{t_1}, e_{t_2}, \dots, e_{t_K}\}$$
$$S_c = \{s_1, s_2, \dots, s_K\}$$

- Second stage (re-ranking): KC-GenRe
 - Inputs: $x_{in} = T_{in}(x_q, x_c)$

instruction template T_{in} , query sequence x_q , candidates sequence x_c

```
Task instruction: ... output a ranking of these candidates.
Query: Jackie Chan played in movie ____ ?
Candidate answers:
A. Ip Man ?
B. King of Comedy ?
C. Police Story ?
```


- (1) Generative Re-ranking Formulation
 - Query: $(e_h, r, ?)$
 - First stage (ranking): KGE methods
 - top-K predicted candidate entities

$$E_c = \{e_{t_1}, e_{t_2}, \dots, e_{t_K}\}$$
$$S_c = \{s_1, s_2, \dots, s_K\}$$

- Second stage (re-ranking): KC-GenRe
 - Outputs: ranking of option identifiers associated with candidates (instead of their labeled name texts)

```
Task instruction: ... output a ranking of these candidates.
Query: Jackie Chan played in movie ____?
Candidate answers:
A. Ip Man ?
B. King of Comedy ?
C. Police Story ?
```


- (2) Knowledge-guided Interactive Training
 - query-candidate interaction
 - candidate-candidate interaction

- (2) Knowledge-guided Interactive Training
 - query-candidate interaction
 - candidate-candidate interaction

$$\mathcal{L}_{Rank} = \frac{C}{K^2} \sum_{\substack{s_i^* < s_j^*}} \max(0, p_i - p_j), i, j \in \{1, \dots, K\}$$
$$\mathcal{L} = \mathcal{L}_{CE} + \lambda \mathcal{L}_{Rank}$$

- (3) Knowledge-augmented Constrained Inference
 - > query-related prompt

constrained option generation

> candidate-supporting prompt

- (3) Knowledge-augmented Constrained Inference
 - query-related prompt

constrained option generation

candidate-supporting prompt

1. Datasets

- Two curated KGs: Wiki27K, FB15K-237-N
- Two open KGs: ReVerb20K, ReVerb45K

Dataset	$ \mathcal{E} $	$ \mathcal{R} $	# Train	# Valid	# Test
Wiki27K	27,122	62	74,793	10,121	10,122
FB15K-237-N	13,104	93	87,282	7,041	8,226
ReVerb20K	11,065	11,058	15,499	1,550	2,325
ReVerb45K	27,008	21,623	35,970	3,598	5,395

Table 1: Dataset statistics.

2. Settings

- Hyperparameters
- Instruction templates
- Hardware: one A800 80G GPU

Dataset	Wiki27K	FB15K-237-N	ReVerb20K	ReVerb45K
K	20	20	30	30
λ	0.1	0.1	0.3	1.0

Table 2: Values of Hyperparameters.

- T_{in} Below is an instruction that describes a task, paired with a question and corresponding candidate answers. The questions and candidate answers have been combined into candidate corresponding statements. Combine what you know, output a ranking of these candidate answers.\n\n ### Question: $\{x_q\}$ \n\n $\{x_c\}$ ### Response:
- T_{in}^k Below is an instruction that describes a task, paired with a question and corresponding candidate answers. The questions and candidate answers have been combined into candidate corresponding statements. Knowledge related to some candidates will be provided that may be useful for ranking. Combine what you know and the following knowledge, output a ranking of these candidate answers.\n\n ### Supporting information: $\{x_q^k\}$ \n\n ### Candidate supporting knowledge: $\{x_c^k\}$ \n\n ### Question: $\{x_q\}$ \n\n $\{x_c\}$ ### Response:

Table 3: Instruction templates of KC-GenRe, where x_q , x_c , x_q^k and x_c^k represent query sequence, candidate sequence, query-related prompt, and candidate-supporting prompt respectively.

3. Main results

 KC-GenRe gains absolute improvements of 3.2% and 6.7% for MRR, 4.4% and 7.7% for Hits@1 on Wiki27K and FB15K-237-N compared to PKGC.

Madal		W	iki27K		FB15K-237-N					
Model	MRR	Hits@1	Hits@3	Hits@10	MRR	Hits@1	Hits@3	Hits@10		
TransE [†] (Bordes et al., 2013)	0.155	0.032	0.228	0.378	0.255	0.152	0.301	0.459		
TransC [†] (Lv et al., 2018)	0.175	0.124	0.215	0.339	0.233	0.129	0.298	0.395		
ConvE [†] (Dettmers et al., 2018)	0.226	0.164	0.244	0.354	0.273	0.192	0.305	0.429		
WWV [†] (Veira et al., 2019)	0.198	0.157	0.237	0.365	0.269	0.137	0.287	0.443		
TuckER (Balazevic et al., 2019)	0.249	0.185	0.269	0.385	0.309	0.227	0.340	0.474		
RotatE [†] (Sun et al., 2019)	0.216	0.123	0.256	0.394	0.279	0.177	0.320	0.481		
KG-BERT [†] (Yao et al., 2019)	0.192	0.119	0.219	0.352	0.203	0.139	0.201	0.403		
LP-RP-RR [†] (Kim et al., 2020)	0.217	0.138	0.235	0.379	0.248	0.155	0.256	0.436		
PKGC [†] (Lv et al., 2022)	0.285	0.230	0.305	0.409	0.332	0.261	0.346	0.487		
KC-GenRe	0.317	0.274	0.330	0.408	0.399	0.338	0.427	0.505		

Table 4: Link prediction results on two curated KGs. Best results are in bold and second best are underlined. [[†]]: results are taken from PKGC (Lv et al., 2022).

3. Main results

KC-GenRe achieves higher performance than previous methods with improvements of 2.1% and 3.5% for MRR, 2.1% and 3.8% for Hits@1 on ReVerb20K and ReVerb45K, respectively.

Model		ReVerb20K					ReVerb45K					
Model	MRR	MR	Hits@1	Hits@3	Hits@10	MRR	MR	Hits@1	Hits@3	Hits@10		
TransE (Bordes et al., 2013)	0.138	1150.5	0.034	0.201	0.316	0.202	1889.5	0.122	0.243	0.346		
ComplEx (Trouillon et al., 2016)	0.038	4486.5	0.017	0.043	0.071	0.068	5659.8	0.054	0.071	0.093		
R-GCN (Schlichtkrull et al., 2018)	0.122	1204.3	-	-	0.187	0.042	2866.8	-	-	0.046		
ConvE (Dettmers et al., 2018)	0.262	1483.7	0.203	0.287	0.371	0.218	3306.8	0.166	0.243	0.314		
KG-BERT (Yao et al., 2019)	0.047	420.4	0.014	0.039	0.105	0.123	1325.8	0.070	0.131	0.223		
RotatE (Sun et al., 2019)	0.065	2861.5	0.043	0.069	0.108	0.141	3033.4	0.110	0.147	0.196		
PairRE (Chao et al., 2021)	0.213	1366.2	0.166	0.229	0.296	0.205	2608.4	0.153	0.228	0.302		
ResNet (Lovelace et al., 2021)	0.224	2258.4	0.188	0.240	0.292	0.181	3928.9	0.150	0.196	0.242		
BertResNet-ReRank (Lovelace et al., 2021)	0.272	1245.6	0.225	0.294	0.347	0.208	2773.4	0.166	0.227	0.281		
CaRe (Gupta et al., 2019)	0.318	973.2	-	-	0.439	0.324	1308.0	-	-	0.456		
OKGIT (Chandrahas and Talukdar, 2021)	0.359	527.1	0.282	0.394	0.499	0.332	773.9	0.261	0.363	0.464		
OKGSE (Xie et al., 2022a)	0.372	487.3	0.291	0.408	0.524	0.342	771.1	0.274	0.371	0.473		
CEKFA (Wang et al., 2023b)	0.387	416.7	0.310	0.427	0.515	0.369	884.5	0.294	0.409	0.502		
KC-GenRe	0.408	410.8	0.331	0.450	0.547	0.404	874.1	0.332	0.444	0.534		

Table 5: Link prediction results on two open KGs. Best results are in bold and second best are underlined.

4. Ablation study

 Compared to Base (KGE model without re-ranking), KC-GenRe gains of 4.1%, 5.2%, 6.8% and 9.0% in MRR on ReVerb20K, ReVerb45K, Wiki27K and FB15K-237-N respectively

					CD	00	ReVe	erb20K	ReVe	erb45K			CCI	סח	CC	Wił	ki27K	FB15	<-237-N
		QUI	001	QF	UP	CG	MRR	Hits@1	MRR	Hits@1		QUI	001	DF	UG	MRR	Hits@1	MRR	Hits@1
	Base						0.367	0.288	0.352	0.274	Base					0.249	0.185	0.309	0.227
1	1						0.350	0.263	0.334	0.246	1					0.283	0.227	0.329	0.248
	2		\checkmark	\checkmark	\checkmark	\checkmark	0.383	0.304	0.365	0.282	2		\checkmark	\checkmark	\checkmark	0.314	0.268	0.340	0.257
	3	\checkmark		\checkmark	\checkmark	\checkmark	0.405	0.326	0.381	0.298	3	\checkmark		\checkmark	\checkmark	0.311	0.266	0.361	0.284
Reranking	4	\checkmark	\checkmark		\checkmark	\checkmark	0.399	0.320	0.397	0.323	4	\checkmark	\checkmark		\checkmark	0.298	0.249	0.353	0.277
with LLM	5	\checkmark	\checkmark	\checkmark		\checkmark	0.403	0.328	0.400	0.327	5	\checkmark	1	\checkmark	-	0.245	0.178	0.303	0.218
	6	\checkmark	\checkmark			\checkmark	0.370	0.284	0.360	0.271	KC-ConBo	•		•		0.317	0.274	0 300	0 338
	7	\checkmark	\checkmark	\checkmark	\checkmark		0.367	0.289	0.352	0.273	NO-Genne	V	V	V	V	0.317	0.274	0.599	0.000
	KC-GenRe	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.408	0.331	0.404	0.332									

Table 6: Ablation results on open KGs, where "Base" denotes TuckER (Balazevic et al., 2019) and "Base" is CEKFA-KFARe (Wang et al., 2023b).

5. Effects of reranking number K

■ The model trained to rank the top-K candidates has the ability to rank beyond the top-K.

Figure 3: Effects of re-ranking number K. The front and back of the slash in the legend represent the values of K during training and testing, respectively.

6. Effects of candidate-candidate interaction

The prediction performance is able to be improved after applying candidate-candidate interaction.

Figure 4: Influences of weight λ in Eq.(2) with different re-ranking number K (Top-K).

7. Effects of Different LLMs

■ Various LLMs exhibit varying levels of performance (the lift may be slight).

	ReVe	erb20K	ReVerb45K				
	MRR	Hits@1	MRR	Hits@1			
LLaMA-7b	0.400	0.324	0.392	0.325			
LLaMA2-7b	0.406	0.334	0.397	0.329			
LLaMA-13b	0.403	0.331	0.392	0.322			
LLaMA-65b	0.400	0.326	0.404	0.342			

Table 8: Link prediction results of KC-GenRe implemented with different LLMs when K = 10.

8. Case study

	Query	Yugioh started in ?
Example 2	Candidates	A. Kazuki Takahashi B. China C. Israel D. Jerusalem E. Lebanon <mark>F. Japan</mark> G. India H. Galilee I. Saudi Arabia J. Asian Russia
	QP	Yugioh is property of Kazuki Takahashi; Yu Gi is the property of Konami; Judaism officially began in Yavneh.
	CP	Yugioh is property of Kazuki Takahashi.
	Output Ranking	F. A. G. C. E. B. I. D. H. J.
	Query	Lyme disease is caused by?
	Candidates	 A. lyme B. lyme disease C. inflammatory bowel disease D. lyme borreliosis E. diabetes F. zithromax G. burgdorferi H. borrelia burgdorferi I. biaxin J. diabetes mellitus
Example 3	QP	borrelia burgdorferi is the causative agent of lyme disease; borrelia burgdorferi is the etiological agent of lyme disease; lyme disease does occur in California.
	СР	lyme opened the door for inflammatory bowel disease; lyme disease is also called lyme borreliosis; zithromax had a positive test for lyme; zithromax is an excellent choice for treating lyme; burgdorferi is responsible for lyme disease; borrelia burgdorferi is the causative agent of lyme disease;
	Output Banking	blaxin is a natural remedy for lyme disease.
	ouput nanking	

Table 10: Examples from datasets ReVerb45K, where QP and CP represent query-related prompt and candidate-supporting prompt respectively. The ground truth tail NPs, helpful information in QP and CP are highlighted. Note that CP may be empty, and different NPs may point to the same target entity, e.g. burgdorferi and borrelia burgdorferi in the third example.

Thanks!