SentiCSE : A Sentiment Representation Learning Framework and a Sentiment-guided Textual Similarity Task for Accurate Sentiment Analysis in a Few-shot Setting

Jaemin Kim^{1,2*,} Yohan Na^{1*,} Kangmin Kim^{1,3}, Sangrak Lee¹ and Dongkyu Chae^{1†} ¹Hanyang University ²LG Electronics, ³BHSN {jaemink, nayohan, kevin7133, sangrak, dongkyu}@hanyang.ac.kr

*Co-first authors

†Corresponding author.

Contents

- 1. Overview
- 2. Background
- 3. Method
- 4. Experiments
- 5. Conclusion

Overview

✤ The viewpoint of semantic representation and sentiment representation should be differentiated.

- \checkmark Previous studies have neglected the evaluation of sentiment representation quality.
- ✓ For achieving strong performance in few-shot learning, it is essential to focus on representation learning.
- \checkmark This paper presents SgTS, a new task to measure sentiment representation quality
- ✓ Additionally, we introduce **SentiCSE**, a framework for learning sentiment-focused representations.

Viewpoint of Semantic

The food is delicious.

Viewpoint of Sentiment

↔ How is Sentiment Analysis Used in the Real World?

Sentiment Analysis

- ✓ Sentiment analysis is now widely used in various industries.[1, 2]
- \checkmark The growth of social media has significantly increased the importance of sentiment analysis.[3]

Brand reputation N

Movie reviews

Politics

Employee satisfaction

[1] Zhang et al., AAAI

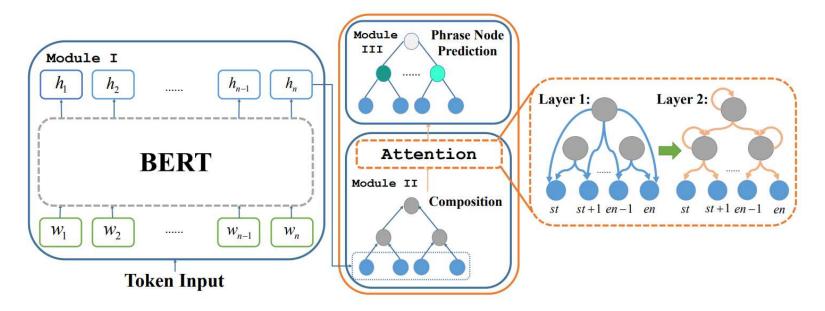
[2] Yu and Jiang., EMNLP

[3] Yadav and Vishwakarma., AIR, 2020

SentiBERT : A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics

Yin, Da et al., ACL

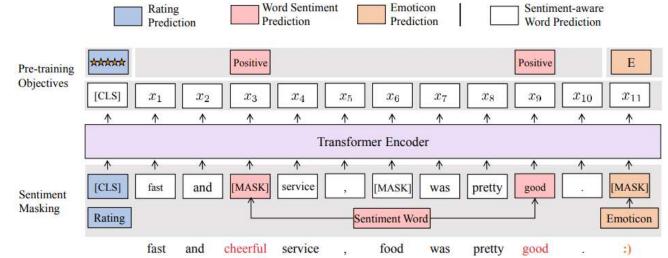
- ✓ Masked Language Modeling : To enable the model to capture contextual information effectively.
- \checkmark Phrase Node Prediction : To capture the compositional sentiment semantics



SENTIX: A Sentiment-Aware Pre-Trained Model for Cross-Domain Sentiment Analysis

J Zhou et al., COLING

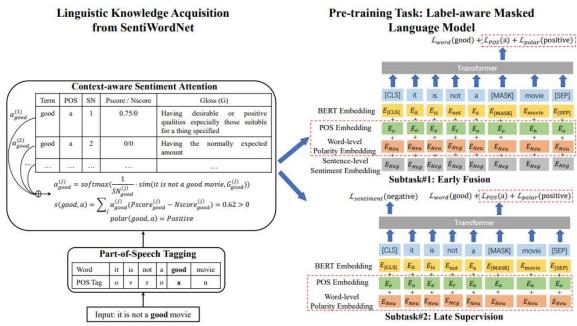
- ✓ Sentiment –aware Word Prediction (SWP) : Similar to Masked Language Modeling (MLM) by masking sentiment words
- ✓ Word Sentiment Prediction (WSP) : Predicting the sentiment polarity of words.
- ✓ Emoticon Prediction (EP) : Similar to Masked Language Modeling (MLM) by masking emoticons
- ✓ Rating Prediction (RP) : Predicting the sentiment polarity rating of sentences.



SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge

Ke et al., EMNLP

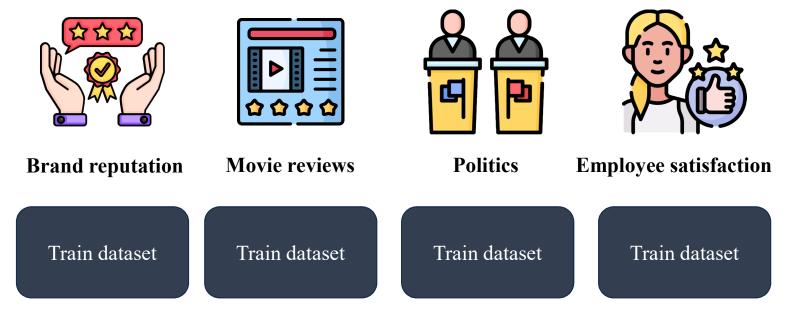
- ✓ Words-level : Predicting the emotional polarity of masked words by incorporating the part-of-speech (POS) tag information.
- ✓ Sentences-level : Predicting the sentiment polarity of a sentence.



✤ How is Sentiment Analysis Used in the Real World?

Sentiment Analysis

- ✓ Obtaining labeled training data for each domain requires labor and time costs.[4]
- ✓ A Sentiment-aware Pre-trained Language Model (PLM) capable of robust performance in a few-shot setting is needed.



[4] Socher et al., EMNLP, 2013

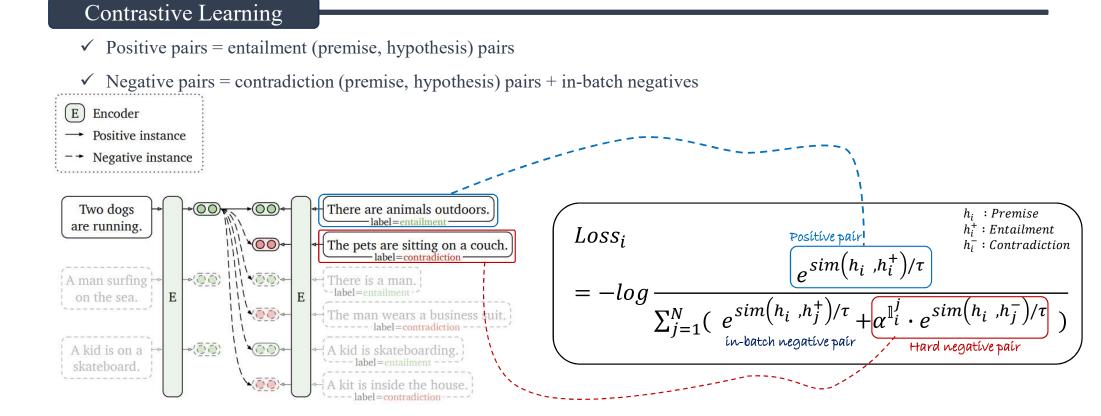
* Sentiment Representation Learning

 \checkmark If the representation is of sufficiently good quality, it can perform well with only a few samples[5].

[5] DU, Simon S., et al., ICLR

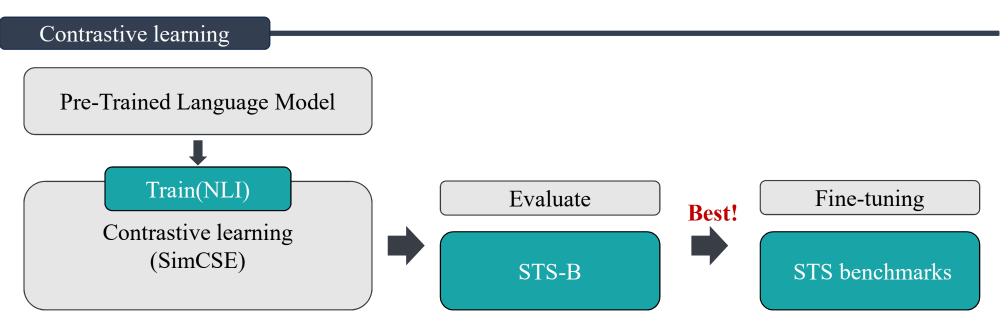
Simple Contrastive Learning of Sentence Embedding (SimCSE)

T Gao et al., EMNLP, 2021 (Cited 1,867 times)



Simple Contrastive Learning of Sentence Embedding (SimCSE)

T Gao et al., EMNLP, 2021 (Cited 1,867 times)

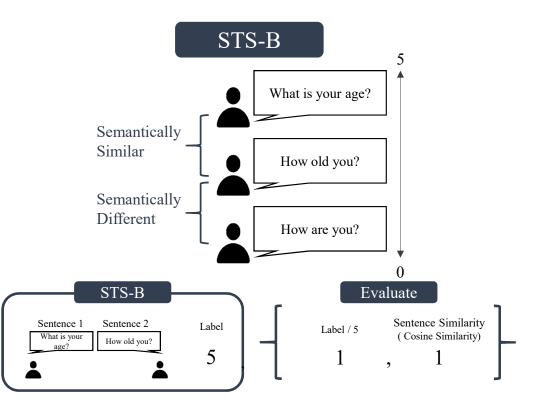


Simple Contrastive Learning of Sentence Embedding (SimCSE)

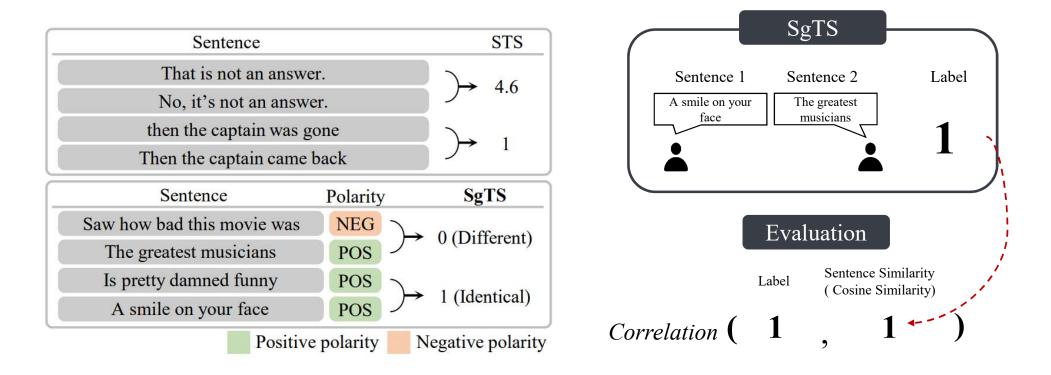
T Gao et al., EMNLP, 2021 (Cited 1,867 times)

Evaluate on Semantic textual similarity tasks

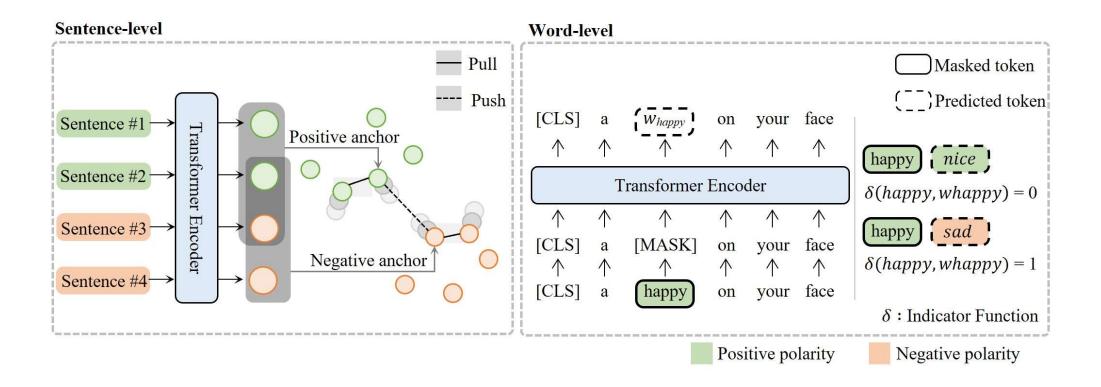
Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
		Unsup	ervised m	odels				
GloVe embeddings (avg.)*	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT _{base} -flow	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base} [♥]	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CT-BERT _{base}	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
* SimCSE-BERT _{base}	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
RoBERTabase (first-last avg.)	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
RoBERTabase-whitening	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
DeCLUTR-RoBERTabase	52.41	75.19	65.52	77.12	78.63	72.41	68.62	69.99
* SimCSE-RoBERTabase	70.16	81.77	73.24	81.36	80.65	80.22	68.56	76.57
* SimCSE-RoBERTa _{large}	72.86	83.99	75.62	84.77	81.80	81.98	71.26	78.90
		Supe	rvised mod	lels				
InferSent-GloVe*	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder*	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT _{base}	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT _{base} -flow	69.78	77.27	74.35	82.01	77.46	79.12	76.21	76.60
SBERT _{base} -whitening	69.65	77.57	74.66	82.27	78.39	79.52	76.91	77.00
CT-SBERT _{base}	74.84	83.20	78.07	83.84	77.93	81.46	76.42	79.39
* SimCSE-BERT _{base}	75.30	84.67	80.19	85.40	80.82	84.25	80.39	81.57
SRoBERTa _{base} *	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTabase-whitening	70.46	77.07	74.46	81.64	76.43	79.49	76.65	76.60
* SimCSE-RoBERTabase	76.53	85.21	80.95	86.03	82.57	85.83	80.50	82.52
* SimCSE-RoBERTalarge	77.46	87.27	82.36	86.66	83.93	86.70	81.95	83.76



Sentiment-guided Textual Similarity (SgTS)

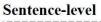


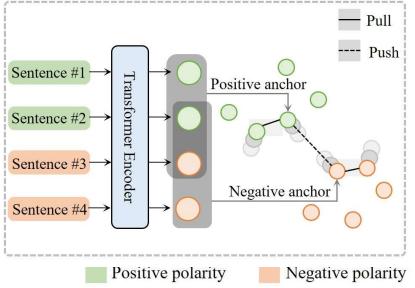
Sentiment-aware Contrastive Sentence Embedding (SentiCSE)

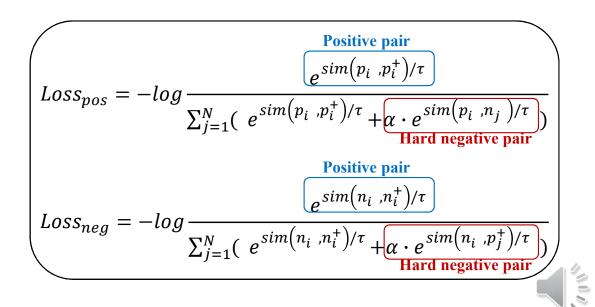


Sentiment-aware Contrastive Sentence Embedding (SentiCSE)

- \checkmark Due to the nature of sentiment polarity, positive and negative are contrasting labels.
- ✓ quadruple of sentences q_i : (p_i, p_i^+, n_i, n_i^+)



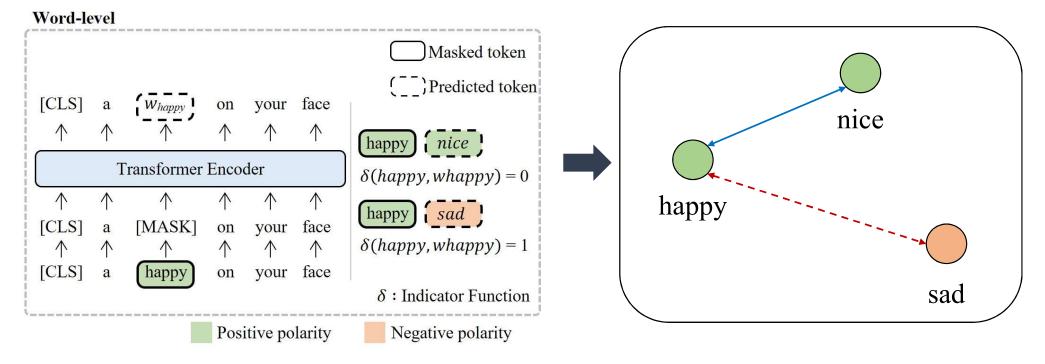




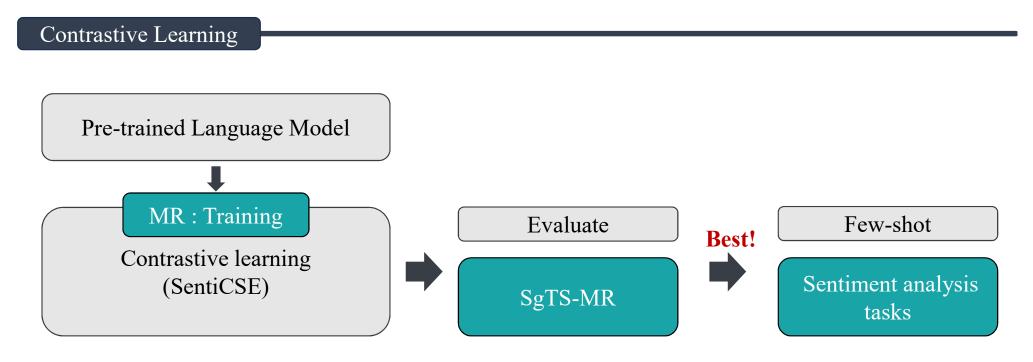
Sentiment-aware Contrastive Sentence Embedding (SentiCSE)

Objectives

 \checkmark Designed to learn about sentiment semantics from sentiment words.



Sentiment-aware Contrastive Sentence Embedding (SentiCSE)



Details

✓ Training Dataset

Model	Backbone		Pre-train	# Contonoos			
woder	Dackbone	Wiki	Amazon	Yelp	SST	MR	# Sentences
SentiBERT	BERT				\checkmark		0.067M
SentiX	BERT		\checkmark	\checkmark			240M
SentiLARE	RoBERTa			1			6.7M
SentiWSP	ELECTRA	1					0.5M
SentiCSE	RoBERTa					~	0.008M

Each model requires between 8 to 48 hours of training time.

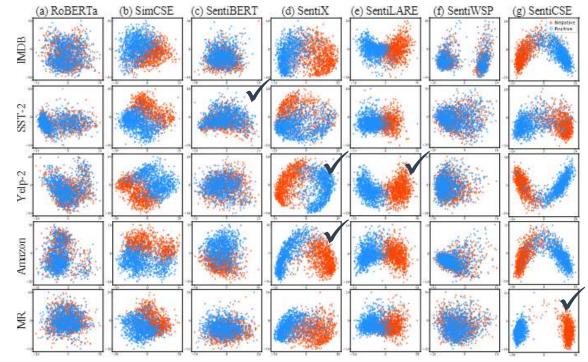
- ✓ Maximum sentence length : 128, embedding dimension 768, batch size 64
- ✓ Two NVIDIA A30 GPUs (3 hours)
- ✓ SentiCSE: Evaluate every 500 steps and utilize the checkpoint at the best performance.

Evaluate the quality of sentiment representation (qualitatively).

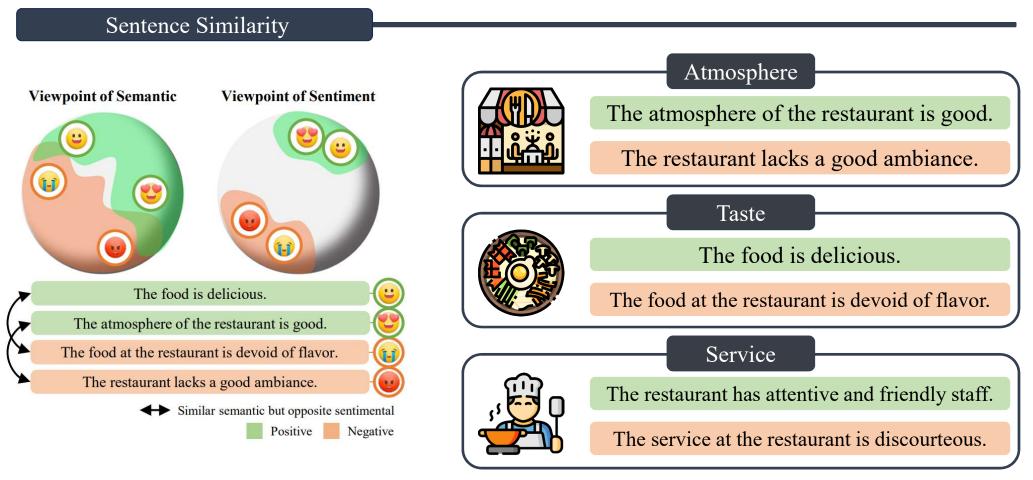
Visualization of Representation

✓ The representation of SentiCSE reflects sentiment context effectively, as seen by the substantial distance between the positive and negative clusters.

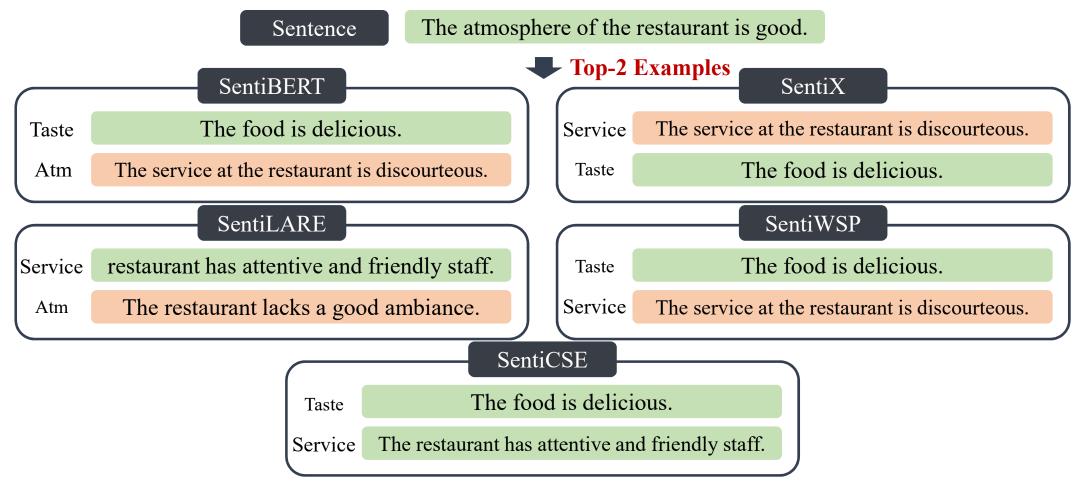
: Training dataset



Evaluate the quality of sentiment representation (qualitatively).



Evaluate the quality of sentiment representation (qualitatively).



Evaluate the quality of sentiment representation (quantitatively).

Few-shot setting

✓ When evaluating performance on datasets not seen during training, it is apparent that SentiCSE delivers better performance.

	1-shot accuracy					5-shot accuracy				
Model	IMDB	SST2	Yelp-2	Amazon	MR	IMDB	SST2	Yelp-2	Amazon	MR
BERT�	52.08	50.26	56.76	52.98	52.24	54.02	54.26	62.64	58.10	54.38
SimCSE令	54.08	61.74	66.20	60.92	61.64	71.26	66.82	81.58	73.58	67.16
SentiBERT	51.40	55.60*	59.64	54.90	54.88	57.76	64.84*	70.20	67.02	64.90
SentiX◇	74.64	64.96	87.66*	86.14	65.06	83.68	72.32	93.40*	92.32*	76.68
SentiCSE�	76.08	87.88	81.62	82.24	85.82*	81.84	93.26	87.64	84.82	86.14*
RoBERTa	52.00	54.54	56.56	52.84	53.82	60.30	49.80	72.42	64.58	56.78
SimCSE 🌲	59.04	61.06	68.44	58.40	61.72	74.72	68.08	86.62	75.14	71.56
SentiLARE \$	70.20	74.26	87.00*	84.58	68.68	87.18	80.10	93.28*	91.06	82.34
SentiCSE	82.64	92.92	89.72	89.04	87.38*	88.12	94.50	92.08	90.40	88.00*

Evaluate the quality of sentiment representation (quantitatively).

Few-shot setting

✓ When comparing each model using a standardized training dataset, it is evident that SentiCSE delivers better performance.

Model	Model		1-shot accuracy					5-shot accuracy					
mouci	WIGGEI	IMDB	SST2	Yelp-2	Amazon	MR	IMDB	SST2	Yelp-2	Amazon	MR		
SST2	SentiBERT◇	51.40	55.60	59.64	54.90	54.88	57.76	64.84	70.20	67.02	64.90		
	SentiCSE◇	74.68	91.82	82.00	81.24	86.94	81.86	92.80	88.02	86.38	90.24		
	SentiX◇	74.64	64.96	87.66	86.14*	65.06	83.68	72.32	93.40	92.32*	76.88		
Volua	SentiCSE◇	69.22	86.10	91.14	85.48	63.76	84.24	86.48	95.24	89.74	80.86		
Yelp2	SentiLARE ♦	70.20	74.26	87.00	84.58	68.68	87.18	80.10	93.28	91.06	82.34		
	SentiCSE 🌲	76.64	84.78	94.26	89.28	73.20	87.98	87.66	95.12	92.68	86.36		
	SentiX◇	74.64	64.96	87.66*	86.14	65.06	83.68	72.32	93.40*	92.32	76.68		
Amazon	SentiCSE◇	75.16	78.56	91.16	93.16	78.02	86.64	85.18	92.98	93.86	85.44		

Evaluate the quality of sentiment representation (quantitatively).

SgTS

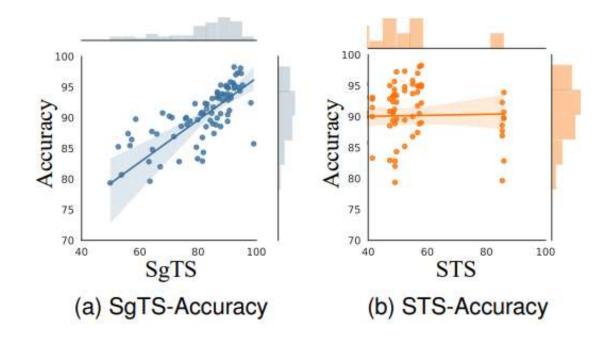
- ✓ Comparative performance of SgTS for quantitatively measuring the quality of the proposed sentiment representation.
- $\checkmark\,$ performs well on the trained data.

			Sg	TS		
Model	IMDB	SST2	Yelp-2	Amazon	MR	Avg.
BERT�	0.01	0.08	0.09	0.15	0.07	0.06
SimCSE令	0.16	0.13	0.24	0.19	0.13	0.18
SentiBERT	0.13	0.17*	0.12	0.09	0.18	0.14
SentiX🗇	0.62	0.48	0.77*	0.52*	0.39	0.56
SentiCSE �	0.64	0.72	0.76	0.37	0.63*	0.62
RoBERTa 4	0.06	0.05	0.06	0.02	0.04	0.06
SimCSE 	0.21	0.11	0.26	0.20	0.19	0.19
SentiLARE 	0.48	0.38	0.65*	0.36	0.57	0.46
SentiCSE 4	0.77	0.72	0.82	0.56	0.69*	0.71

✤ Validity of SgTS

SgTS

- \checkmark It is observed that when SgTS shows high performance, the few-shot accuracy is also high.
- \checkmark There is a significant correlation above 0.7, significant at the 0.01 level.



Evaluate the quality of sentiment representation (quantitatively).

Linear probing

 \checkmark It is confirmed that each model demonstrates good performance relative to the size of the dataset learned from.

Model	IMDB	SST2	Yelp-2	Amazon	MR
BERT¢	85.25	85.44	89.75	86.44	80.68
SimCSE�	86.91	87.73	92.29	88.60	79.64
SentiBERT	87.40	90.25*	90.76	87.33	84.80
SentiX�	94.20	89.45	97.33*	94.82*	85.18
SentiCSE�	90.63	95.30	93.12	89.93	85.74*
RoBERTa A	82.82	79.36	88.87	81.98	50.38
SimCSE 🌩	90.73	89.68	93.89	89.82	82.83
SentiLARE 	94.84	92.20	98.26*	95.10	89.02
SentiCSE 🌲	94.03	95.18	95.86	93.69	89.49*

Conclusion

✤ We argue that the representation for the viewpoint of semantic and the viewpoint of sentiment should be distinct.

- \checkmark We propose the first task that can measure the quality of sentiment representation.
- \checkmark Using this, we suggest a framework for learning sentiment representation.
- ✤ We demonstrate superiority in a few-shot setting that can be utilized in the industry.
- SgTS shows validity in measuring the quality of sentiment representation.

