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Pediatric

Background SDoH

e Pediatric Social Determinants of Health (SDoH) ‘

* Conditions in which children born, grow, and live

* Social, behavioral, and environmental factors Secondary
» Knowledge of Pediatric SDoH can inform patient care ElFlR Use

» Long-term impact for pediatric patients

* Electronic health record (EHR)
* Contains both structured and unstructured patient information
* Pediatric SDoH are primarily documented in unstructured clinical narratives
* Clinical texts contains nuanced and detailed representation of many Pediat

DoH factors

* Healthcare data - secondary use applications
* Real-time clinical decision-support
* Large-scale retrospective studies

For secondary use of Pediatric SDoH from EHR, unstructured text descriptions must be

mapped to a structured representation (hnormalization)
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Related work

SDoH corpora
* Focus on a singular SDoH factor, such as substance usel’l ,homelessness!®>¢l adverse
childhood experiences from adults [6-7]

 SDoH corpora under different contexts, such as adult population (2022 n2c2 shared task)
8], sexual health®l and hospital readmission rate %

 Lack comprehensive, and fine-grained SDoH corpus for pediatric patients

IE methods for SDoH
* Rule-, machine-learning- and BERT-based models [17-18]

* GPT-4 in-context learning for clinical |EL'®-20]

* Limited exploration of generative large language models (LLMs) with different learning
strategies, such as fine-tuning and prompt engineering.



Pediatric Social History Annotation Corpus

(PedSHAC)

Pediatric Population

* Patients under 18 years old
10-year period

198k distinct notes

36k distinct patients
University of Washington (UW)

PedSHAC annotated data
* 1,260 social history sections
10 Pediatric SDoH events

Pediatric SDoH events
* Trigger span
* Labeled arguments: normalization

Living arrangement
Status: current
Type: with both parents
Social History: She|lives with parents, and 5 other siblings of various ages.

Employment Employment
Status: employed Status: homemaker

Father\works|in construction, mother stays at home caring for children.

Living arrangement
Status: current

They live on the border of [LOCATION].

Food insecurity
Status: current

No housing concerns. Can|get tight for food|by the end of the month.

Example social history section from EHR with Pediatric SDoH events




PedSHAC

Event Trigger Trigger examples # labels IAA
& Arg. & Argument subtypes Train Validation Test F1
Adoption Trigger “adopted”, ... 27 4 9
Dataset Education Trigger “5th grade” , “junior year”, ... 227 35 74
. . . Access Status (yes,no) 227 35 74
¢ Traln/valld/test. 894’ 121 ’ and 245 Employment Trigger ‘Employment: ... 7, “works”, ... 390 45 17
social history sections Status (employed, unemployed, retired, 54, 45 17
on disability, student, homemaker)
) Trigger “food stamps”, “food insecurity”, ... 37 5 8
SD H | . Food Insecurity Status (current, past, none) 37 5 8
oH event evaluation Trigger “lives”, “foster care”, ... 676 101 195
° Trigger: span overlap (relaxed) Living Status (CL_Jrrent, past, future)_ _ 676 101 195
Arrangement (with both parents, with single
 Labeled a reuments: label-on |.y Type* parent, with other relatives, with 566 86 160
lizati foster family, with strangers)
(norma 1Za IOn) Residence® (home, institution, homeless) 136 22 38
° Sa me as 2022 n2c2 SDOH Trigger “depression’, “self-harm”, ... 45 11 15
Mental Health Status (current, past, none) 45 11 15
Challenge Experiencer (patient, parent/caregiver) 45 11 15
Substance Use  Trigger “meth”, "alcohol”, “smokes”,... 265 38 78
- Alcohol / Status (current, past, none) 265 38 78
Inter-annotator agreement (|AA) Drug / Tobacco  Experiencer (patient, parent/caregiver) 265 38 78
. Trigger “‘mentally abusive”, “bullying”, ... 132 23 33
 Double annotation on the test set Trauma Status (yes, no) 132 23 33
0 . . (divorce / separation, loss,
+96% valldatlon set. Type psychological, physical, domestic 132 23 33

violence, sexual)




PedSHAC

Dataset

* Train/valid/test: 894, 121, and 245
social history sections

SDoH event evaluation
* Trigger: span overlap (relaxed)
* Labeled arguments: label-only

e Same as 2022 n2c2 SDoH

Inter-annotator agreement (IAA)
Double annotation on the test set

(normalization)

challenge

+ 96% validation set.

Event Trigger Trigger examples # labels IAA
& Arg. & Argument subtypes Train Validation Test F1
Adoption Trigger “adopted”, ... 27 4 9 100.0
Education Trigger “5th grade” , “junior year”, ... 227 35 74 80.0
Access Status (yes,no) 227 35 74 80.0
Trigger ‘Employment: ... 7, “works”, ... 390 45 17 81.1
Employment Stat (employed, unemployed, retired, 290 45 17 778
s on disability, student, homemaker) )
) Trigger “food stamps”, “food insecurity”, ... 37 5 8 40.0
Food Insecurity Status (current, past, none) 37 5 8 40.0
Trigger “lives”, “foster care”, ... 676 101 195 90.4
Living Status (current, past, future) 676 101 195 88.5
Arrangement (with both parents, with single
Type* parent, with other relatives, with 566 86 160 88.4
foster family, with strangers)
Residence® (home, institution, homeless) 136 22 38 38.1
Trigger “‘depression’, “self-harm”, ... 45 11 15 66.7
Mental Health Status (current, past, none) 45 11 15 53.3
Experiencer (patient, parent/caregiver) 45 11 15 66.7
Substance Use  Trigger “meth”, "alcohol”, “smokes”,... 265 38 78 86.4
- Alcohol / Status (current, past, none) 265 38 78 85.7
Drug / Tobacco  Experiencer (patient, parent/caregiver) 265 38 78 73.2
Trigger “‘mentally abusive”, “bullying”, ... 132 23 33 88.9
Trauma Status (yes, no) 132 23 33 88.9
(divorce / separation, loss,
Type psychological, physical, domestic 132 23 33 84.6

violence, sexual)




Pediatric SDoH Information Extraction (IE)

Encoder-only LM Generative LM
mSpERT (Lybarger et al.,2023)
Fine * Multi-label span classification Prompting strategies
tunin * Relation prediction omitted Single-step event extraction (Event)
g Two-step question-answering (2sQA)
GPT-4
In-context learning * In-context learning

* Guideline summary
* Few-shot examples
 HIPAA-compliant Azure instance




Prompting Strategy — Event

« Adapted from Romanowski et al., 2023[2]

Living arrangement
Status: current
Type: with both parents
Social History: She lives with parents ...

Employment Employment
Status: employed Status: homemaker

Father works in construction, mother|stays ...

Living arrangement
Status: current

They live on the border of [LOCATION].

Food insecurity
Status: current

... Can get tight for food by ...



Prompting Strategy — 2sQA

Living arrangement
Status: current
Type: with both parents
Social History: She lives with parents ...

Employment Employment
Status: employed Status: homemaker

Father|\works in construction, mother stays| ...

Living arrangement
Status: current

They live on the border of [LOCATION].

Food insecurity
Status: current
I

seq 'Can bet tight for foodJ by s




IE performance

F1
Trigger & mSpERT | Flan-T5 Flan-T5| GPT- GPT GPT GPT
Event 88 # Gold -Event -2sQA | Event -2sQA -2sQA -2sQA
Argument oy rs s
+guideline +guideline
+few-shot
Micro Av Trigger 529  0.80 0.80 0.81 0.70 0.71 0.80" 0.827
- Arguments 844  0.75 0.76  0.78 0.62 0.60 0.70" 0.72
Prompting

* No significant difference between Event and QA
Significance

* pairwise non-parametric bootstrap test (p<0.05)

* “indicates > mSpERT

* Tin-context learning > GPT-QA



IE performance
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Error analysis

vs. Infrequent event types
Fine-tuned models
* Lowrecall: poor generalization

In-context learning
: especially for living
arrangements, with false positives such as
O “Dad </name>, Mom </name> "
* High recall: great generalization for infrequent
subtypes.

F1

mSpERT Flan-T5 GPT
Trigger &

Event # Gold -2sQA -2sQA
Argument .
+guideline
+few-shot
Adoption Trigger 9 0.84 0.84 0.55
Education  Trigger 74 | 0.78 0.84 0.86'
Access Status 74 | 0.78 0.84 0.85"
Employment Trigger 117 | 0.75 0.81 0.89:T
Status 117 | 0.71 0.74 0.81°1
Food Trigger 8 | 0.93 0.93 0.88
Insecurity Status 8 0.93 0.93 0.88
Trigger 195 | 0.85 0.85 0.84
Living Status 195 0.83 0.84 0.78
Arrangement Type 160 0.83 0.89 0.78
Residence 38 0.64 0.62 0.29
Trigger 15  0.38 0.36 0.52
Mental Health Status 15  0.29 0.35 0.44
Experiencer 15  0.10 0.17 0.44
Trigger 78 | 0.86 0.82 0.80"
szizstance Status 78 | 0.81 0.82 0.77"
Experiencer 78 | 0.75 0.81 0.80"
Trigger 33  0.62 0.53 0.70
Trauma Status 33 0.52 0.54 0.63
Type 33  0.55 0.54 0.67
Micro Avg. Trigger 529 | 0.80 0.81 0.827

Arguments 844 | 0.75 0.78" 0.72!

10



Error analysis

Frequent vs. event types
Fine-tuned models

* High precision

* Lowrecall:

In-context learning
* Low precision: especially for living
arrangements, with false positives such as
O “Dad </name>, Mom </name> "
* Highrecall: for infrequent
subtypes.
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Food Trigger 8 0.93 0.93 0.88
Insecurity Status 8 0.93 0.93 0.88
Trigger 195 0.85 0.85 0.84
Living Status 195 0.83 0.84 0.78
Arrangement Type 160 0.83 0.89° 0.78
Residence 38 0.64 0.62 0.29
Trigger 15 = 0.38 0.36 0.52
Mental Health Status 15 0.29 0.35 0.44
Experiencer 15 0.10 0.17 0.44"
Trigger 78  0.86 0.82 0.80"
LSJ‘;ZStance Status 78 0.81  0.82 0.77"
Experiencer 78 0.75 0.81 0.80"
Trigger 33  0.62 0.53 0.70
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Error analysis

Challenges for both models
* Distinguishing past and current events
O “Lived with grandmom. Now dad.”
* Implicit reasoning
O “Father has him 3 days a week. Live with
Mom in other time.”

F1

i mSpERT Flan-T5 GPT

Event Trigger & # Gold -2sQA -2sQA
Argument ey .

+guideline
+few-shot

Adoption Trigger 9 0.84 0.84 0.55
Education  Trigger 74 0.78 0.84 0.86"
Access Status 74 0.78 0.84 0.85'
Employment Trigger 117  0.75 0.81 0.89:T
Status 117  0.71 0.74 0.817

Food Trigger 8 0.93 0.93 0.88
Insecurity Status 8 0.93 0.93 0.88
Trigger 195  0.85 0.85 0.84

Living Status 195  0.83 0.84 0.78
Arrangement Type 160 0.83 0.89° 0.78
Residence 38 0.64 0.62 0.29

Trigger 15  0.38 0.36 0.52

Mental Health Status 15 0.29 0.35 0.44
Experiencer 15 0.10 0.17 0.44

Trigger 78  0.86 0.82 0.80"

LSJ‘;ZStance Status 78 0.81 0.82 0.77!
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Trigger 33  0.62 0.53 0.70

Trauma Status 33 0.52 0.54 0.63
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. Trigger 529  0.80 0.81 0.82'
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Conclusion

Our contributions include

* Anovelcorpus, PedSHAC, annotated for fine-grained 10 SDoH factors from 1,260 social history
sections from real pediatric clinical notes.
* Exploring I[E across multiple dimensions, including

O pre-trained transformer architectures: encoder-only (BERT), encoder-decoder (Flan-T5), decoder-
only (GPT-4)

U learning strategies: fine-tuning and in-context methods
O prompting approaches: one-step text-to-event and two-step QA.

 Demonstrating that detailed SDoH representations can be extracted from pediatric narratives with
performance comparable to human annotators

Future directions would include:

» Effective data selection strategies to save annotation costs: such as active learning in the annotation

* GPT-4 prompt-tuning: involvement of medical experts, automatic prompt generation, self-verification to
improve the response quality

11
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Thank you!

QR code for the manuscript QR code for the GitHub

Dataset to be released, after the IRB approval from our home
Institution, and the de-identification step.
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