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» Knowledge Graph Completion (KGC):
» Predict missing links to address the incompleteness of knowledge graphs.
» Challenges: Limitations in text quality and incomplete graph structures.
» Lack sufficient entity descriptions.
» Rely solely on relationship names, resulting in a shallow understanding of relationship semantics.

» Lack of structural information contained within long-tail entities leads to suboptimal results.
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» Approach: We propose a general enhancement framework that addresses the limitations of

contextual knowledge by leveraging multiple perspectives through querying LLMs.

» MPIKGC-E: Expanding entity descriptions using the reasoning capabilities of LLMs.

» MPIKGC-R: Understanding relationship semantics by leveraging the interpretive abilities of LLMs.

» MPIKGC-S: Enhancing structural information through the summarization capabilities of LLMs.

Strategies

Templates

MPIKGC-E

Please provide all information about {Entity Name}. Give the rationale before
answering:

MPIKGC-R
Global

Please provide an explanation of the significance of the relation {Relation Name}
in a knowledge graph with one sentence:

MPIKGC-R
Local

Please provide an explanation of the meaning of the triplet (head entity, {Relation
Name}, tail entity) and rephrase it into a sentence:

MPIKGC-R
Reverse

Please convert the relation {Relation Name} into a verb form and provide a
statement in the passive voice:

MPIKGC-S

Please extract the five most representative keywords from the following text:
{Entity Description}. Keywords:
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» MPIKGC-E:

» Design a Chain-of-Thought (CoT) prompt strategy, that enables LLMs to break down complex

queries into different directions and generate descriptions step-by-step.

> Instructs LLMs to implicitly query relevant information on their own, resulting in more efficient

and extensive responses.

Strategies | Templates

MPIKGC-E | Please provide all information about {Entity Name}. Give the rationale before
answering:
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» MPIKGC-R:

>
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Global: aims to deduce the significance of a relation from the perspective of the entire KG,

thereby facilitating better association between two relations

Local: intends to infer the relation's meaning from the triplet perspective, thereby enhancing

comprehension and suggesting possible types of head/tail entities while predicting missing facts

Reverse: entails LLMs to represent relations as verbs, and convert them to the passive voice

MPIKGC-R | Please provide an explanation of the significance of the relation {Relation Name}
Global in a knowledge graph with one sentence:

MPIKGC-R | Please provide an explanation of the meaning of the triplet (head entity, {Relation
Local Name}, tail entity) and rephrase it into a sentence:

MPIKGC-R | Please convert the relation {Relation Name} into a verb form and provide a
Reverse statement in the passive voice:
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» MPIKGC-S:

To convert the LLMs generative text into graph-based data, we utilize the summarizing capability of
LLMs to extract relevant keywords from description, then calculate a matching score s between

entities keywork:
s = len(m)/min(len(ky), len(ky)),
m = intersection(ky, k),

where k;, and k. denote the keywords of head/tail entities, respectively, and m is the intersection of k,
and k, .

MPIKGC-S | Please extract the five most representative keywords from the following text:
{Entity Description}. Keywords:
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» The enhanced KG obtained through the aforementioned techniques is utilized in multiple KGC

models to improve the performance of link prediction and triple classification tasks.

Improved Knowledge Graph
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> Experimental results demonstrate that this enhancement approach improves the performance of

multiple KGC models.

Models FB15k237 WN18RR
MR| MRRt H@1t H@3t H@101 | MR| MRR?T H@11t H@3T H@101
Structure-based Approaches

TransE (Bordes et al., 2013) 323 279 198 376 4412300 24.3 43 441 53.2
DistMult (Yang et al., 2014) 512 281 19.9 30.1 4467000 444 412 470 50.4
ConvVE (Dettmers et al., 2018) 245 312 225 341 49.7 4464 456 419 470 53.1
RotatE (sunetal, 2019) 177 33.8 241 375 53.3|3340 47.6 428 49.2 57.1
ATTH (Chami et al., 2020) - 348 252 384 540 - 486 443 499 57.3

Description-based Approaches
CSProm-KG (Chenetal.,2023)| 188 35.23 26.05 38.72 53.57| 545 55.10 50.14 57.04 64.41

+MPIKGC-E 195 35.51 26.38 38.96 53.74 (1244 53.80 49.19 55.65 62.81
+MPIKGC-R 192 35.38 26.29 38.83 53.50| 838 53.90 49.35 55.74 62.36
+MPIKGC-S 179 35.95 26.71 39.52 54.30| 528 54.89 49.65 56.75 65.24
LMKE (Wang et al., 2022b) 135 30.31 21.49 33.02 48.07| 54 55.78 4291 64.61 79.28
+MPIKGC-E 138 30.83 21.89 33.67 48.75| 57 56.35 43.27 65.54 79.53
+MPIKGC-R 145 30.99 22.21 33.70 48.83| 59 57.60 45.10 65.95 79.35
+MPIKGC-S 135 30.68 21.67 33.35 48.91| 70 50.71 36.91 59.65 76.13
SImMKGC (Wang et al., 2022a) 146 32.66 24.13 3542 49.65| 148 65.64 57.08 71.20 80.33
+MPIKGC-E 143 33.01 24.37 3580 50.29| 124 65.64 57.10 71.09 80.41
+MPIKGC-R 156 31.05 22.63 33.62 47.65| 129 66.41 57.90 72.08 81.47

+MPIKGC-S 143 33.22 24.49 36.26 50.94| 170 61.48 52.81 66.77 76.94
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» The overall results indicate our framework can enhance the performance of various KGC models

in both link prediction and triplet classification tasks.

Models | FB13  WN11

Structure-based Approaches

TransE (Bordes et al., 2013) 81.5 75.9
DistMult (vang et al., 2014) 86.2 87.1
ConvKB (Nguyen et al., 2018) | 88.8 87.6

Description-based Approaches
KG-BERT (vaoetal,2019) | 84.74 93.34

+MPIKGC-E 86.29 94.13
+MPIKGC-R 84.51 93.36
+MPIKGC-S 85.35 93.61
LMKE (wang et al., 2022b) 91.70 93.71
+MPIKGC-E 91.52 93.84
+MPIKGC-R 91.49 93.93

+MPIKGC-S 91.81 93.91
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» Ablation of Multi-perspective Prompts.

Models FB15k237

MRR H@1 H@3 H@10
LMKE 30.31 21.49 33.02 48.07
+MPIKGC-E 30.71 21.97 33.29 48.35
+MPIKGC-R 30.64 21.70 33.22 48.74
+MPIKGC-S 30.68 21.67 33.35 48.91

+MPIKGC-E&R 30.74 21.77 33.57 48.77
+MPIKGC-E&S 30.92 21.85 33.67 49.50
+MPIKGC-R&S 31.21 22.26 33.86 4942
+MPIKGC-E&R&S | 30.97 21.91 33.90 49.28

Table 5: Ablation of augmentation methods from
different perspectives.
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» Analysis of hype-parameter k and the self-loop setting on FB15k237
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Figure 3: Analysis of hype-parameter k£ and the self-loop setting on FB15k237.
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> Combine MPIKGC-R Global & Local & Reverse

Models WN18RR
MRR H@1 H@3 H@10
SimKGC 65.64 57.08 71.20 80.33

+MPIKGC-R Global | 66.41 57.90 72.08 81.47
+MPIKGC-R Local 64.45 54.87 70.65 81.57
+MPIKGC-R Reverse | 66.53 59.28 70.72 80.09
+MPIKGC-R G&L 66.97 59.88 70.82 79.77
+MPIKGC-R G&R 65.56 657.00 70.98 80.90
+MPIKGC-R L&R 65.75 57.36 71.03 80.06
+MPIKGC-R G&L&R | 65.85 57.47 70.98 80.64

Table 6: Ablation of different relation understanding
strategies and combinations on WN18RR.
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> Different LLMs as backbone for Data Augmentation

Models FB15k237
MRR H@1 H@3 H@10
LMKE 30.31 21.49 33.02 48.07

+MPIKGC-E (Llama-2) 30.56 21.62 33.47 48.15
+MPIKGC-E (ChatGLM2) | 30.83 21.89 33.67 48.75

+MPIKGC-R (Llama-2) 30.64 21.70 33.22 48.74
+MPIKGC-R (ChatGLM2) | 30.24 21.33 32.96 48.27
+MPIKGC-R (ChatGPT) | 30.65 21.82 33.24 48.52
+MPIKGC-R (GPT4) 30.99 22.21 33.70 48.83

+MPIKGC-S (Llama-2) 30.68 21.67 33.35 48.91
+MPIKGC-S (ChatGLM2) | 31.07 22.26 33.81 48.82

Table 7: Ablation of different LLMs on FB15k237.
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» MPIKGC:
» Expanding the entity descriptions by designing Chain-of-Thought prompt
» Enhancing the understanding of relation by designing global, local, and reverse prompts

» As well as extracting the structural data via keywords summarization and matching

» Extensive Experiments on four KGC models:
> Link Prediction
Triplet Classification

Combination of Multi-perspective Prompts

>

>

» Parameter Analysis

> Combination of Relation Understanding
>

Comparison of LLMs



