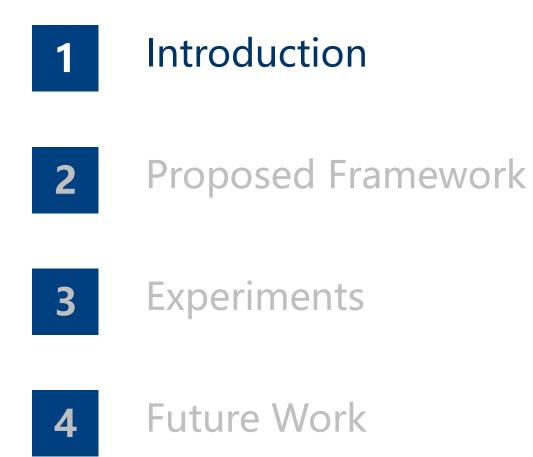
Synergetic Interaction Network with Cross-task Attention for Joint Relational Triple Extraction

Da Luo *, Run Lin*, Qiao Liu*, Yuxiang Cai, Xueyi Liu, Yanglei Gan, Rui Hou University of Electronic Science and Technology of China (* Co-First Author, * Corresponding author)

May, 2024



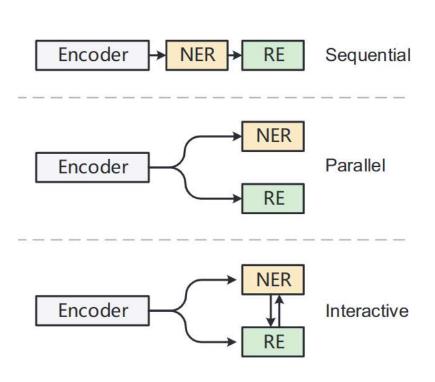
Task Definition

Calvin had a delicious lasagna near the University of Turin, Italy						
Subject	Relation	Object				
Calvin	Eat	lasagna				

Joint relational triple extraction simultaneously identifies entities and their relations in text to create relational triples **<Subject, Relation, Object>**.

Related Works

Recent methods have explored three main categories:



- Sequence encoding method
 - MHSM (Bekoulis et al., 2018b), CASREL (Wei et al., 2020), AT (Bekoulis et al., 2018a)
- Parallel encoding method
 - Graphrel (Fu et al., 2019), DYGIE++ (Wadden et al., 2019)
- Interactive encoding method
 - > RIN (Sun et al., 2020), MD-RNN (Wang and Lu, 2020),
 - > PFN (Yan et al., 2021), MGE (Xiong et al., 2022)

Contributions

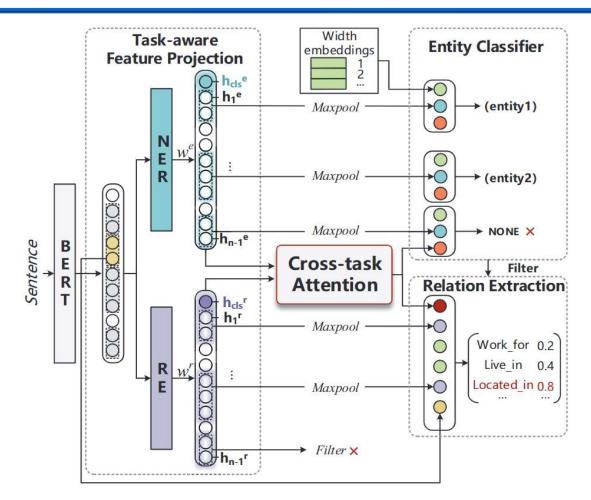
- We present a novel synergetic interaction network that enables effective bidirectional interaction between NER and RE sub-tasks by leveraging contextual association.
- Our proposed method leverages a cross-task attention mechanism to boost interaction between NER and RE sub-tasks, enhancing contextual comprehension and inference capabilities while ensuring efficient computational and memory use.
- The experimental results on three standard benchmarks indicate that our method performs better than state-of-the-art baselines.

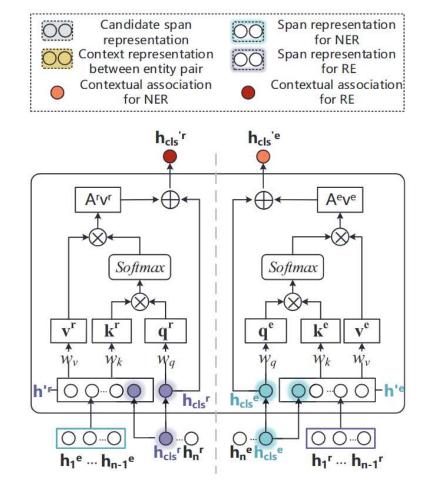
2

Experiments

Future Work

Model Overview

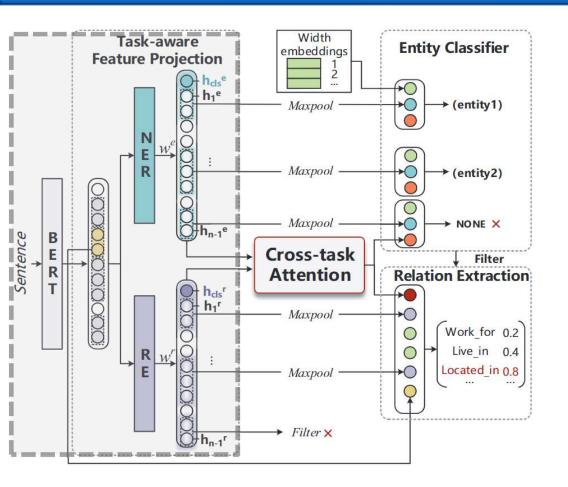




(b) Cross-task Attention Mechanism

(a) Framework of SINET

Input Layer



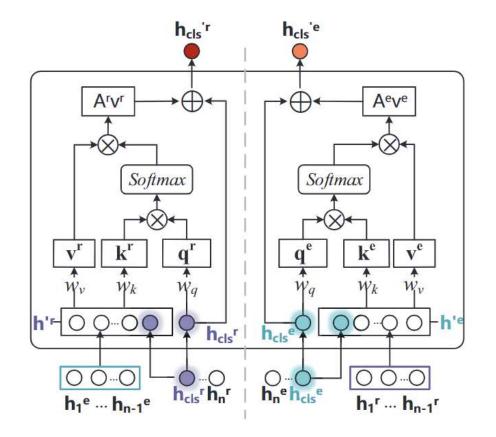
• the input sentence X of BERT encoder : $Y_{enc}(X) = \{h_{cls}, h_1, h_2, \dots, h_n \mid h_i \in \mathbb{R}^{d \times 1}\}$

• Task-aware representation:

$$\boldsymbol{h}_{i}^{e} = f^{e}(\boldsymbol{h}_{i}) = \boldsymbol{w}^{e}\boldsymbol{h}_{i}, \boldsymbol{h}_{i}^{r} = f^{r}(\boldsymbol{h}_{i}) = \boldsymbol{w}^{r}\boldsymbol{h}_{i}$$

(a) Framework of SINET

Cross-task Attention Mechanism (CTAM)



(b) Cross-task Attention Mechanism

 Representation combination between task-aware features:

 $h_{i}^{\prime e} = [h_{i}^{r}; h_{cls}^{e}], h_{i}^{\prime r} = [h_{i}^{e}; h_{cls}^{r}]$

 Model the contextual associations between NER and RE:

$$q^{e} = w_{q}h_{cls}^{e}, k^{e} = w_{k}h^{\prime e}, v^{e} = w_{v}h^{\prime e}$$

$$q^{r} = w_{q}h_{cls}^{r}, k^{r} = w_{k}h^{\prime r}, v^{r} = w_{v}h^{\prime r}$$

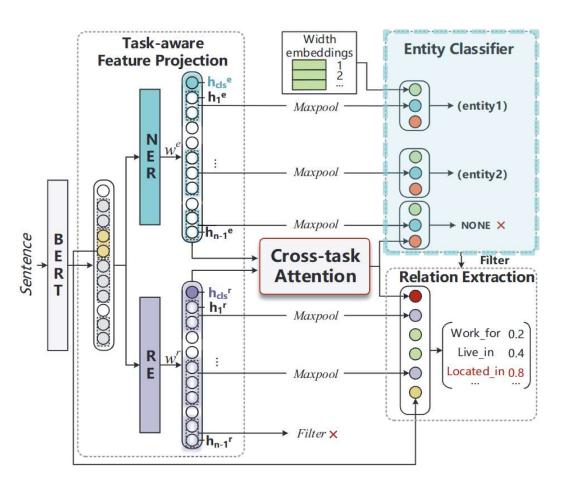
$$A^{e} = softmax(q^{e}k^{eT}/\sqrt{d/h})$$

$$A^{r} = softmax(q^{r}k^{rT}/\sqrt{d/h})$$

$$h_{cls}^{\prime e} = A^{e}v^{e} + h_{cls}^{e}, h_{cls}^{\prime r} = A^{r}v^{r} + h_{cls}^{r}$$

• Output of CTAM with Layer normalization: $h'^{e}_{cls} = LN(h'^{e}_{cls}), h'^{r}_{cls} = LN(h'^{r}_{cls})$

Entity Classifier



- The entity span representation: $s_i^e = Maxpool(h_i^e, h_{i+1}^e, ..., h_j^e)$
- The input to entity classifier:

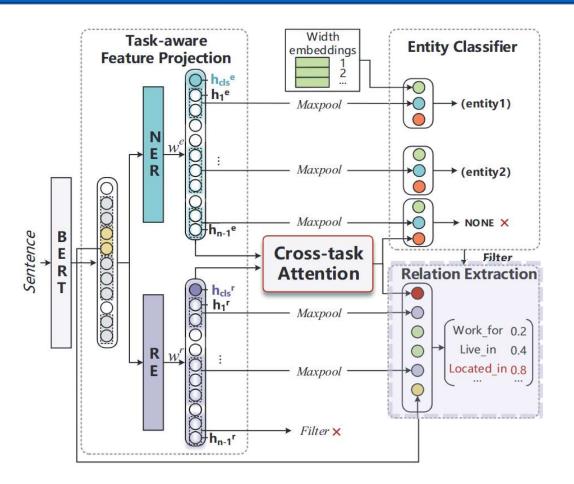
 $\boldsymbol{e}_{i} = [\boldsymbol{s}_{i}^{e}; \boldsymbol{w}_{k}; \boldsymbol{h'}_{cls}^{e}]$

• *e_i* is then fed to a Feed-forward Neural Network:

$$y^e = softmax(w_{ner}e_i + b^e)$$

(a) Framework of SINET

Multi-label Relation Extraction



(a) Framework of SINET

• The relation span's embeddings:

$$s_i^r = Maxpool(h_i^r, h_{i+1}^r, \dots, h_j^r)$$
$$e(s_1) = [s_1^r; w_k], e(s_2) = [s_2^r; w_k]$$

- The local context, c(s₁, s₂), is derived from BERT embeddings of tokens between two entity spans using max pooling.
- The input to relation classifier: $r_1 = [e(s_1); c(s_1, s_2); e(s_2); h'_{cls}]$ $r_2 = [e(s_2); c(s_2, s_1); e(s_1); h'_{cls}]$
- r_1 and r_2 are passed to the relation classifier:

$$y^r = Sigmoid(w_{re}r_{1/2} + b^r)$$

Future Work

Datasets & Evaluation Metrics

• Datasets

- ACE04, ACE05 (Walker et al., 2005)
- SciERC (Luan et al., 2018)
- Evaluation Metrics
 - micro F1-score
 - One evaluation metric for NER
 - > **Ent:** requires both correct type and boundary.
 - Two evaluation metrics for RE
 - Boundaries evaluation (Rel): considers a triple prediction correct only if the predicted relation and the boundaries of two spans are correct.
 - Strict evaluation (Rel+): requires predicted entity types to be correct in addition to satisfying the conditions of the boundaries evaluation.

Main Results

Model	Encoder	ACE04		ACE05			SciERC			
model	Encoder	Ent	Rel	Rel+	Ent	Rel	Rel+	Ent	Rel	Rel+
SPTree (Miwa and Bansal, 2016)	Bb	81.80	-	48.40	83.40	-	55.60	-	-	-
ScilE (Luan et al., 2018)	SciB	17 - -	-	-	-	-	-	64.20	39.30	-
DYGIE (Luan et al., 2019)	Bb	87.40	59.70	-	-	-	3 — 3	-	15 - -	-
DYGIE++ (Wadden et al., 2019)	Bb	17 - 1	-	-	88.60	63.40		-	3 -	-
DYGIE++ (Wadden et al., 2019)	SciB	7 - -	-	-	-	-		67.50	48.40	-
Multi-turn QA (Li et al., 2019)	Bb	83.60	-	49.40	84.80	-	60.20	-	77-	-
Two are Better than One (Wang and Lu, 2020)	ALB	88.60	-	59.60	89.50	-	64.30	-	-	-
SPE (Wang et al., 2020)	SciB		-	-		-	20	66.90	-	33.60
SpERT (Eberts and Ulges, 2020)	SciB	-	-	-	-	-	-	70.33	50.84	-
$SPAN_{Multi-Head}$ (Ji et al., 2020)	Bb	-	-	-	89.59	65.24		. —	-	-
PURE (Zhong and Chen, 2021)	ALB	88.80	64.70	60.20	89.70	69.00	65.60	-	-	-
PURE (Zhong and Chen, 2021)	SciB	-	-	-		-	20	66.60	48.20	35.60
PFN (Yan et al., 2021)	ALB	89.30	-	62.50	89.00	-	66.80		-	-
PFN (Yan et al., 2021)	SciB	-	-	-		-	2 — 2	66.80	-	38.40
MGE (Xiong et al., 2022)	ALB	89.30	-	63.80	89.70	-	68.20	-	-	-
MGE (Xiong et al., 2022)	SciB	-	-	-	-	-	-	<mark>68.4</mark> 0	-	39.40
	Bb	88.27	60.86	57.34	88.58	66.18	62.83	1.5		
SINET (Ours)	SciB	_	2	-	-	-	-	72.59	51.01	40.13
	ALB	90.53	66.53	64.65	90.56	69.04	<u>65.71</u>			8

Ablation Study

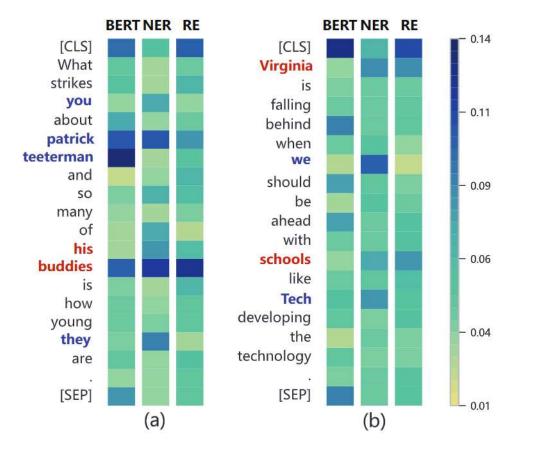
• Effects of synergetic interaction

	Settings	Ent	Rel	Rel+
SciERC	Base	73.99	50.49	41.85
	Base+TAP	74.48	50.54	41.94
	Base+TAP+CTAM $_{NER}$	74.26	50.36	42.70
	Base+TAP+CTAM $_{RE}$	74.01	49.84	41.63
	Base+TAP+CTAM	74.65	50.99	42.91
ACE05	Base	86.57	63.70	60.42
	Base+TAP	86.75	63.83	60.56
	Base+TAP+CTAM _{NER}	86.76	63.80	60.35
	Base+TAP+CTAM $_{RE}$	86.83	64.09	60.98
	Base+TAP+CTAM	86.85	64.67	61.42

- **Base**: Directly feed the output from the BERT encoder into the entity and relation classifiers without additional encoding or interaction.
- **Base+TAP**: h_{cls}^{e} and h_{cls}^{r} , generated by the TAP, are utilized for NER and RE respectively.
- **Base+TAP+CTAM**_{NER}: $h_{cls}^{\prime e}$ obtained from CTAM, and h_{cls}^{r} obtained from TAP are leveraged for NER and RE respectively.
- Base+TAP+CTAM_{RE}: h^e_{cls} obtained from TAP, and h^{'r}_{cls} obtained from CTAM are leveraged for NER and RE respectively.
- Base+TAP+CTAM: h^{'e}_{cls} and h^{'r}_{cls} obtained from CTAM are leveraged for NER and RE respectively.

Case Study

• Visualization



- In-triple entities: Entities and relations that form a valid relational triple, representing a meaningful relationship within the context.

golden triple: <"his", "PER-SOC", "buddies"> <"Virginia", "PART-WHOLE", "schools">

- **Out-of-triple entities**: Entities may be semantically linked in the text but do not form a valid relational triple.

Model Efficiency

• Efficiency

	Model	FLOPs (M)	Inference Time (s)
SciERC	SPAN _{Multi_Head}	3892.93	21
	PFN	1517.51	34
	SINET	1279.25	11
ACE05	Two are Better than One	3867.13	117
	PFN	26970.74	134
	SINET	26113.61	65

Comparison of model efficiency on Sci-ERC (SciBERT) and ACE05 (ALBERT-xxlarge-v1).

Future Work

 We will further optimize the effect of SINET in relational triple extraction and its computational efficiency, striving for the best balance between performance and efficiency.

 We attempt to apply and improve Cross-task Attention Mechanism to more NLP tasks, such as the Aspect Sentiment Triplet Extraction (ASTE) task and other interactive tasks.

THANKS FOR YOUR LISTENING

- Code available at <u>https://github.com/AONE-NLP/RTE-SINET</u>
- If you have problem, feel free to send email to runlin@uestc.edu.cn, qliu@uestc.edu.cn

Synergetic Interaction Network with Cross-task Attention for Joint Relational Triple Extraction