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Introduction

* Few-shot Named Entity Recognition (FS-NER) aims to develop NER systems capable of learning
from a small set of labeled samples and then generalizing well to new, unseen domain.

* Recent research(SpanProto, DecomposedNER ...) decomposes the task into two phases: span
extraction and entity classification. This paradigm simplifies the difficulty of the task, so it tends to
give good results.

* We summarize our main contributions as follows:
1. We propose a novel three-stage framework for FS-NER, including: Teacher span recognizer,
Student span recognizer and Entity classifier.
2. We are the pioneers in applying the idea of soft label learning to the few-shot field, which
is helpful for obtaining a stronger span recognizer.
3. We are the first to integrate prompt learning with prototypical network as our Entity
classifier.



Examples

Types (1). Location (2). Person

(1).The nearest tube station is [covent garden],

Location®

Support
PP (2).[Shami],,,.., was born into a shiite family in 1945 .
Query Culbertson came back to fort union in 1840.
Location: fort union
Output

Person: Culbertson
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Span recognizer

Construct key and query vectors:
qi = Wffh,' y g br_},, k,‘ = th; + b;’;
Calculate span score:
s, /) = 4; k;

Loss function:

L=1log|l+ Z @D | 1 10g] 1 + Z s
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Span recognizer

Traing for Student
_Span Recognizer
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Entity classifier '
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Experiments

Intra Inter
Models 1~.2-shot 5~10-shot i 1~2-shot 5~10-shot e
5 way 10 way 5 way 10 way 9: 5 way 10 way 5 way 10 way 9-
ProtoBERT" 20.76:084 15.05:044 42.54:094 35.40:013 28.44 38.83:1.49 32.45:0.79 58.79:044 52.92:037 45.75
NNShot? 25.78:091 18.27:0.41 36.18:079 27.38:053 26.90 47.24:1.00 38.87:0.21 55.64:063 49.57:273 47.83
StructShot | 30.21:090 21.03:1.13 38.00:120 26.42:060 28.92 51.88:069 43.34:0.10 57.32:063 49.57:308 50.53
CONTaiNER(Das et al., 2021) 40.43 33.84 53.70 47.49 43.87 55.95 48.35 61.83 57.12 55.81
SpanProto* 39.76+1.72  31.62+0.73 51.05+096 46.05:031 42.12 55.72+121 50.22+1.03 62.65:0.11 57.64:045 56.56
ESDf 36.08:160 30.00:0.70 52.14:150 42.15:260 40.09 59.29:125 52.16:0.79 69.06:080 64.00:043 61.13
DecomposedMetaNER 49.48:085 42.84:0.46 62.92:057 57.31x025 53.14 64.75:035 58.65:043 71.49:047 68.11:005 65.75
Ours 56.35:064 50.51:0.36 65.22:052 58.35:019 57.61 68.20:079 64.72:0.23 72.86:046 68.62:027 68.60

Table 1: F1 scores on FewNERD.The best results are in bold.i denotes the result reported in Ma et al.
(2022)*.x represents the results we reproduce with the same dataset version.

1-shot 5-shot
News Wiki Social Mixed Avg. News Wiki Social Mixed Avg.
TransferBERTT 4.75+1.42 0.57:0.32 2.71:0.72 3.46:0.54 2.87 15.36:281 3.62:057 11.08:057 35.49:760 16.39
SimBERTT 19.22 6.91 5.18 13.99 11.33 32.01 10.63 8.20 21.14 18.00
Matching Network® 19.50:035 4.73:0.46 17.23:275 15.06+161 14.13 19.85:074 5.58:023  6.61:175  8.08:047 10.03
ProtoBERTT 32.49:201 3.89:024 10.68:140 6.67:046 13.43 50.06:157 9.54:044 17.26:265 13.59:161 22.61
L-TapNet+CDT(Hou et al., 2020) 44.30:3.15 12.04:065 20.80:1.06 15.17x1.25 23.08 45.35:267 11.65:234 23.30:280 20.95:281 25.31
DecomposedMetaNERT 46.09:044 17.54:098 25.14:024 34.13:092 30.73 58.18:087 31.36:091 31.02:128 45.55:090 41.53
Ours 57.42:028 30.89:0.75 27.91:044 37.72:083 38.49 62.44:056 38.57:064 31.23:1.02 46.64:040 44.62

Table 2: F1 scores on Cross-DataSet.The best results are in bold. denotes the result reported in Ma
et al. (2022).



Experiments

Intra  Inter
Ours 57.48 68.60
1)w/o Soft Boundary Learning 56.12 66.63
2)w/o Prompt 53.28 65.07

3)w/o Soft Boundary Learning w/o Prompt 51.85 61.90

Table 3: The average F1 scores of ablation study
on Few-NERD.



Experiments

799 —— |nter

A—Intra
76.0 /\

~
g
(=]

~
Py
(=]

F1-score(%)

73.0
0.3 0.4 0.5 0.6 0.7 0.8 0.9

Soft label weight A

Figure 5: Impact of A on the F1 score of student
span recognizer on 5-way 5~10-shot Few-NERD.



Experiments

= building-restaurant

=  building-hospital

*  building-hotel
event-protest
event-election

Figure 6: The t-SNE visualization of entity representations on Few-NERD Intra, 5-way 5~10-shot
validation set.We randomly choose 5 classes which include a total of 9722 samples.The left section shows
the conventional ProtoNet’s 2D visualization, while the right depicts Prompt-ProtoNet’s 2D visualization.



Conclusion

* We propose a novel three-stage framework for FS-NER, including: Teacher span recognizer,
Student span recognizer and Entity classifier.

* We are the pioneers in applying the idea of soft label learning to the few-shot field, which is
helpful for obtaining a stronger span recognizer.

* We are the first to integrate prompt learning with prototypical network as our Entity classifier.

* Extensive experiments demonstrate that our method outperforms previous methods with a
large margin on two widely used benchmarks.



Thanks for
watching.




